SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Kun) ;lar1:(umu)"

Sökning: WFRF:(Zhu Kun) > Umeå universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
3.
  • Oei, Ling, et al. (författare)
  • A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus
  • 2014
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593 .- 1468-6244. ; 51:2, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.AIM: To identify CNVs associated with osteoporotic bone fracture risk.METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies.RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p=8.69×10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p=0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk.CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.
  •  
4.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
5.
  • Zhu, Ying, et al. (författare)
  • Effects of divalent copper on tetracycline degradation and the proposed transformation pathway
  • 2020
  • Ingår i: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 27:5, s. 5155-5167
  • Tidskriftsartikel (refereegranskat)abstract
    • To reveal the characteristics of tetracycline (TC) photocatalytic degradation under Cu(II) coexistence, effects of Cu(II) on TC photocatalytic degradation by ZnO nanoparticles (ZnO NPs) as a function of pH, humic acid (HA), and initial Cu(II) concentration were investigated. Interaction of TC with Cu(II) in the treatment process was analyzed by circular dichroism (CD) spectroscopy, while TC degradation pathway was investigated by high-performance liquid chromatography-mass spectrometry. Sixty-five percent and ninety-one percent TC degradation within 60 min in the absence and presence of Cu(II), respectively, was reported. Both adsorption and photocatalytic degradation of TC under Cu(II) coexistence increased with increasing pH from 3 to 6, while decreased with further increase in pH. HA inhibited the degradation of TC by ZnO NPs both in the presence as well absence of Cu(II), while TC degradation decreased from 91 to 73% and from 73 to 37% in the presence and absence of Cu(II), respectively. TC degradation by ZnO NPs first increased then decreased with increasing Cu(II). Maximum TC degradation (about 94%) was obtained in the optimum concentration range of Cu(II) (0.05-0.15 mmol/L). In addition, there was a lag effect between TC adsorption and degradation on ZnO NPs. TC degradation was improved via Cu(II)-TC surface complexation and followed N-demethylation and hydroxylation routes. This study could be of potential importance in extrapolating the transformation of TC or other antibiotics under the coexistence of heavy metals in water.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Hallmans, Göran (3)
Khaw, Kay-Tee (2)
Cooper, Cyrus (2)
Thorleifsson, Gudmar (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
visa fler...
Zhu, Kun (2)
Hsu, Yi-Hsiang (2)
Kooperberg, Charles (2)
Luben, Robert (2)
Kaptoge, Stephen K. (2)
Reid, David M (2)
Rivadeneira, Fernand ... (2)
Reeve, Jonathan (2)
Hofman, Albert (2)
Jameson, Karen A (2)
Uitterlinden, André ... (2)
Svensson, Olle (2)
Cupples, L. Adrienne (2)
Richards, J Brent (2)
Ioannidis, John P. A ... (2)
Kiel, Douglas P. (2)
Pettersson-Kymmer, U ... (2)
Karasik, David (2)
Slagboom, P. Eline (2)
Jackson, Rebecca D. (2)
Medina-Gomez, Caroli ... (2)
Estrada, Karol (2)
van Meurs, Joyce B. ... (2)
Liu, Ching-Ti (2)
Jukema, J. Wouter (2)
Ford, Ian (2)
Trompet, Stella (2)
Buckley, Brendan M. (2)
Scollen, Serena (2)
Riancho, José A (2)
Ingvarsson, Thorvald ... (2)
Li, Rui (2)
Lips, Paul (2)
Styrkarsdottir, Unnu ... (2)
Oei, Ling (2)
Alonso, Nerea (2)
Hocking, Lynne J (2)
Husted, Lise Bjerre (2)
Kruk, Marcin (2)
Lewis, Joshua R (2)
Patel, Millan S (2)
Goltzman, David (2)
Gonzalez-Macias, Jes ... (2)
Langdahl, Bente Lomh ... (2)
visa färre...
Lärosäte
Uppsala universitet (2)
Lunds universitet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy