1. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XX. Constraints on inflation
 2016

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/ 0.006 and tightly constrain its scale dependence to dn(s)/dln k = 0.003 +/ 0.007 when combined with the Planck lensing likelihood. When the Planck highl polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensortoscalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the Bmode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensortoscalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple powerlaw spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slowroll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulationbased analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth PR (k) over the range of scales 0.008 Mpc(1) less than or similar to k less than or similar to 0.1 Mpc(1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 2040 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and nonGaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the nonadiabatic contribution to the observed CMB temperature variance is vertical bar alpha(nonadi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slowroll singlefield inflationary models, as expected from the increased precision of Planck data using the full set of observations.


2. 
 Akrami, Y., et al.
(författare)

Planck 2018 results X. Constraints on inflation
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/ 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensortoscalar ratio, r(0.002)< 0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)< 0.056. In the framework of standard singlefield inflationary models with Einstein gravity, these results imply that: (a) the predictions of slowroll models with a concave potential, V(phi) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the nonparametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(1)k less than or similar to 0.2 Mpc(1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the nonadiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matterbaryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scaledependent dipolar modulation. All these findings support the key predictions of the standard singlefield inflationary models, which will be further tested by future cosmological observations.


3. 
 Akrami, Y., et al.
(författare)

Planck 2018 results VII. Isotropy and statistics of the CMB
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the Lambda CDM cosmological model, yet also confirm the presence of several socalled anomalies on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, Q and U, or the Emode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of nonGaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., l less than or similar to 400). In this regime, no unambiguous detections of cosmological nonGaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the Lambda CDM cosmological model, and also gives a clear indication of how Planck provides stateoftheart measurements of CMB temperature and polarization on degree scales.

