SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Pauw A) ;lar1:(umu)"

Sökning: WFRF:(de Pauw A) > Umeå universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antoniou, A. C., et al. (författare)
  • Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers : Implications for risk prediction
  • 2010
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 70:23, s. 9742-9754
  • Tidskriftsartikel (refereegranskat)abstract
    • The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR = 1.10, 95% CI: 1.03-1.18, P = 0.006 and HR = 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P = 7 × 10-11 - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42% to 50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences might be sufficient to influence the clinical management of mutation carriers.
  •  
2.
  •  
3.
  •  
4.
  • Vigorito, Elena, et al. (författare)
  • Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95% CI: 0.68 to 0.79, p-value 2x 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95% CI: 0.59 to 0.80, p-value 1.0 x 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.
  •  
5.
  • Ding, Yuan C, et al. (författare)
  • A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers
  • 2012
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 21:8, s. 1362-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers.METHODS: IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers.RESULTS: Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 (HR, 1.43; 95% confidence interval (CI), 1.06-1.92; P = 0.019) and BRCA2 mutation carriers (HR, 2.21; 95% CI, 1.39-3.52, P = 0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class II mutations than class I mutations (class II HR, 1.86; 95% CI, 1.28-2.70; class I HR, 0.86; 95%CI, 0.69-1.09; P(difference), 0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class II mutation carriers (HR, 2.42; P = 0.03).CONCLUSION: The IRS1 Gly972Arg single-nucleotide polymorphism, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class II mutation carriers.Impact: These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers.
  •  
6.
  • Heudt, Laetitia, et al. (författare)
  • Raman spectroscopy and laser desorption mass spectrometry for minimal destructive forensic analysis of black and color inkjet printed documents
  • 2012
  • Ingår i: Forensic Science International. - : Elsevier. - 0379-0738 .- 1872-6283. ; 219:1-3, s. 64-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Inkjet ink analysis is the best way to discriminate between printed documents, or even though more difficult, to connect an inkjet printed document with a brand or model of printers. Raman spectroscopy and laser desorption mass spectrometry (LDMS) have been demonstrated as powerful tools for dyes and pigments analysis, which are ink components. The aim of this work is to evaluate the aforementioned techniques for inkjet inks analysis in terms of discriminating power, information quality, and nondestructive capability. So, we investigated 10 different inkjet ink cartridges (primary colors and black), 7 from the HP manufacturer and one each from Epson, Canon and Lexmark. This paper demonstrates the capabilities of three methods: Raman spectroscopy, LDMS and MALDI-MS. Raman spectroscopy, as it is preferable to try the nondestructive approach first, is successfully adapted to the analysis of color printed documents in most cases. For analysis of color inkjet inks by LDMS, we show that a MALDI matrix (9-aminoacridine, 9AA) is needed to desorb and to ionize dyes from most inkjet inks (except Epson inks). Therefore, a method was developed to apply the 9AA MALDI matrix directly onto the piece of paper while avoiding analyte spreading. The obtained mass spectra are very discriminating and lead to information about ink additives and paper compositions. Discrimination of black inkjet printed documents is more difficult because of the common use of carbon black as the principal pigment. We show for the first time the possibility to discriminate between two black-printed documents coming from different, as well as from the same, manufacturers. Mass spectra recorded from black inks in positive ion mode LDMS detect polyethylene glycol polymers which have characteristic mass distributions and end groups. Moreover, software has been developed for rapid and objective comparison of the low mass range of these positive mode LDMS spectra which have characteristic unknown peaks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy