SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Roestel Jan) "

Sökning: WFRF:(van Roestel Jan)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bellm, Eric C., et al. (författare)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
2.
  • Mahabal, Ashish, et al. (författare)
  • Machine Learning for the Zwicky Transient Facility
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 131:997
  • Tidskriftsartikel (refereegranskat)abstract
    • The Zwicky Transient Facility is a large optical survey in multiple filters producing hundreds of thousands of transient alerts per night. We describe here various machine learning (ML) implementations and plans to make the maximal use of the large data set by taking advantage of the temporal nature of the data, and further combining it with other data sets. We start with the initial steps of separating bogus candidates from real ones, separating stars and galaxies, and go on to the classification of real objects into various classes. Besides the usual methods (e.g., based on features extracted from light curves) we also describe early plans for alternate methods including the use of domain adaptation, and deep learning. In a similar fashion we describe efforts to detect fast moving asteroids. We also describe the use of the Zooniverse platform for helping with classifications through the creation of training samples, and active learning. Finally we mention the synergistic aspects of ZTF and LSST from the ML perspective.
  •  
3.
  • Ho, Anna Y. Q., et al. (författare)
  • ZTF20aajnksq (AT 2020blt) : A Fast Optical Transient at z ≈ 2.9 with No Detected Gamma-Ray Burst Counterpart
  • 2020
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ZTF20aajnksq (AT 2020blt), a fast-fading (Delta r = 2.3 mag in Delta t = 1.3 days) red (g - r 0.6 mag) and luminous (M-1626 A = -25.9 mag) optical transient at z = 2.9 discovered by the Zwicky Transient Facility (ZTF). AT 2020blt shares several features in common with afterglows to long-duration gamma-ray bursts (GRBs): (1) an optical light curve well-described by a broken power law with a break at t(j) = 1 d (observer frame); (2) a luminous (L0.3-10 KeV = 10(46) erg s(-1)) X-ray counterpart; and (3) luminous (L-10 GHz = 4 x 10(31) erg s(-1) Hz(-1)) radio emission. However, no GRB was detected in the 0.74 days between the last ZTF nondetection (r > 21.36 mag) and the first ZTF detection (r = 19.60 mag), with an upper limit on the isotropic-equivalent gamma-ray energy release of E-gamma,E-iso < 7 x 10(52) erg. AT 2020blt is thus the third afterglow-like transient discovered without a detected GRB counterpart (after PTF11agg and ZTF19abvizsw) and the second (after ZTF19abvizsw) with a redshift measurement. We conclude that the properties of AT 2020blt are consistent with a classical (initial Lorentz factor Gamma(0) greater than or similar to 100) on-axis GRB that was missed by high-energy satellites. Furthermore, by estimating the rate of transients with light curves similar to that of AT 2020blt in ZTF high-cadence data, we agree with previous results that there is no evidence for an afterglow-like phenomenon that is significantly more common than classical GRBs, such as dirty fireballs. We conclude by discussing the status and future of fast-transient searches in wide-field high-cadence optical surveys.
  •  
4.
  • Kupfer, Thomas, et al. (författare)
  • Year 1 of the ZTF high-cadence Galactic plane survey : strategy, goals, and early results on new single-mode hot subdwarf B-star pulsatos
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 505:1, s. 1254-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the goals, strategy, and first results of the high-cadence Galactic plane survey using the Zwicky Transient Facility (ZTF). The goal of the survey is to unveil the Galactic population of short-period variable stars, including short-period binaries, and stellar pulsators with periods less than a few hours. Between 2018 June and 2019 January, we observed 64 ZTF fields resulting in 2990 deg2 of high stellar density in the ZTF-r band along the Galactic plane. Each field was observed continuously for 1.5 to 6 h with a cadence of 40 sec. Most fields have between 200 and 400 observations obtained over 2–3  continuous nights. As part of this survey, we extract a total of ≈230 million individual objects with at least 80 epochs obtained during the high-cadence Galactic plane survey reaching an average depth of ZTF–r ≈ 20.5 mag. For four selected fields with 2–10 million individual objects per field, we calculate different variability statistics and find that ≈1–2  per cent of the objects are astrophysically variable over the observed period. We present a progress report on recent discoveries, including a new class of compact pulsators, the first members of a new class of Roche lobe filling hot subdwarf binaries as well as new ultracompact double white dwarfs and flaring stars. Finally, we present a sample of 12 new single-mode hot subdwarf B-star pulsators with pulsation amplitudes between ZTF–r = 20–76 mmag and pulsation periods between P = 5.8–16 min with a strong cluster of systems with periods ≈6 min. All of the data have now been released in either ZTF Data Release 3 or Data Release 4.
  •  
5.
  • Soumagnac, Maayane T., et al. (författare)
  • SN 2018fif : The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility
  • 2020
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-cadence transient surveys are able to capture supernovae closer to their first light than ever before. Applying analytical models to such early emission, we can constrain the progenitor stars' properties. In this paper, we present observations of SN 2018fif (ZTF 18abokyfk). The supernova was discovered close to first light and monitored by the Zwicky Transient Facility (ZTF) and the Neil Gehrels Swift Observatory. Early spectroscopic observations suggest that the progenitor of SN 2018fif was surrounded by relatively small amounts of circumstellar material compared to all previous cases. This particularity, coupled with the high-cadence multiple-band coverage, makes it a good candidate to investigate using shock-cooling models. We employ the SOPRANOS code, an implementation of the model by Sapir & Waxman and its extension to early times by Morag et al. Compared with previous implementations, SOPRANOS has the advantage of including a careful account of the limited temporal validity domain of the shock-cooling model as well as allowing usage of the entirety of the early UV data. We find that the progenitor of SN 2018fif was a large red supergiant with a radius of R = 744.0(-128.0)(+183.0) R-circle dot and an ejected mass of M-ej = 9.3(-5.8)(+0.4) M-circle dot. Our model also gives information on the explosion epoch, the progenitor's inner structure, the shock velocity, and the extinction. The distribution of radii is double-peaked, with smaller radii corresponding to lower values of the extinction, earlier recombination times, and a better match to the early UV data. If these correlations persist in future objects, denser spectroscopic monitoring constraining the time of recombination, as well as accurate UV observations (e.g., with ULTRASAT), will help break the extinction/radius degeneracy and independently determine both.
  •  
6.
  • Strotjohann, Nora L., et al. (författare)
  • Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae
  • 2021
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 907:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction-powered supernovae (SNe) explode within an optically thick circumstellar medium (CSM) that could be ejected during eruptive events. To identify and characterize such pre-explosion outbursts, we produce forced-photometry light curves for 196 interacting SNe, mostly of Type IIn, detected by the Zwicky Transient Facility between early 2018 and 2020 June. Extensive tests demonstrate that we only expect a few false detections among the 70,000 analyzed pre-explosion images after applying quality cuts and bias corrections. We detect precursor eruptions prior to 18 Type IIn SNe and prior to the Type Ibn SN 2019uo. Precursors become brighter and more frequent in the last months before the SN and month-long outbursts brighter than magnitude -13 occur prior to 25% (5-69%, 95% confidence range) of all Type IIn SNe within the final three months before the explosion. With radiative energies of up to 10(49) erg, precursors could eject similar to 1 M of material. Nevertheless, SNe with detected precursors are not significantly more luminous than other SNe IIn, and the characteristic narrow hydrogen lines in their spectra typically originate from earlier, undetected mass-loss events. The long precursor durations require ongoing energy injection, and they could, for example, be powered by interaction or by a continuum-driven wind. Instabilities during the neon- and oxygen-burning phases are predicted to launch precursors in the final years to months before the explosion; however, the brightest precursor is 100 times more energetic than anticipated.
  •  
7.
  • Szkody, Paula, et al. (författare)
  • Cataclysmic Variables in the Second Year of the Zwicky Transient Facility
  • 2021
  • Ingår i: Astronomical Journal. - 0004-6256 .- 1538-3881. ; 162:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a filter in the GROWTH Marshal based on color and the amplitude and timescale of variability, we have identified 372 objects as known or candidate cataclysmic variables (CVs) during the second year of the operation of the Zwicky Transient Facility. From the available difference imaging data, we found that 93 are previously confirmed CVs and 279 are strong candidates. Spectra of four of the candidates confirm them as CVs by the presence of Balmer emission lines, while one of the four has prominent He ii lines indicative of containing a magnetic white dwarf. Gaia EDR3 parallaxes are available for 154 of these systems, resulting in distances from 108–2096 pc and absolute magnitudes in the range of 7.5–15.0, with the largest number of candidates between 10.5 and 12.5. The total numbers are 21% higher than from the previous year of the survey with a greater number of distances available but a smaller percentage of systems close to the Galactic plane. Comparison of these findings with a machine-learning method of searching all the light curves reveals large differences in each data set related to the parameters involved in the search process.
  •  
8.
  • Yao, Yuhan, et al. (författare)
  • Multi-wavelength Observations of AT2019wey : a New Candidate Black Hole Low-mass X-ray Binary
  • 2021
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 920:2
  • Tidskriftsartikel (refereegranskat)abstract
    • AT2019wey (SRGA J043520.9+552226, SRGE J043523.3+552234) is a transient first reported by the ATLAS optical survey in 2019 December. It rose to prominence upon detection, three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its first all-sky survey. X-ray observations reported in Yao et al. suggest that AT2019wey is a Galactic low-mass X-ray binary (LMXB) with a black hole (BH) or neutron star (NS) accretor. Here we present ultraviolet, optical, near-infrared, and radio observations of this object. We show that the companion is a short-period (P ≲ 16 hr) low-mass (<1 M⊙) star. We consider AT2019wey to be a candidate BH system since its locations on the Lradio–LX and Lopt–LX diagrams are closer to BH binaries than NS binaries. We demonstrate that from 2020 June to August, despite the more than 10 times brightening at radio and X-ray wavelengths, the optical luminosity of AT2019wey only increased by 1.3–1.4 times. We interpret the UV/optical emission before the brightening as thermal emission from a truncated disk in a hot accretion flow and the UV/optical emission after the brightening as reprocessing of the X-ray emission in the outer accretion disk. AT2019wey demonstrates that combining current wide-field optical surveys and SRG provides a way to discover the emerging population of short-period BH LMXB systems with faint X-ray outbursts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy