SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van Westen Danielle) ;pers:(Spotorno Nicola)"

Sökning: WFRF:(van Westen Danielle) > Spotorno Nicola

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmadi, Khazar, et al. (författare)
  • Fixel-Based Analysis Reveals Tau-Related White Matter Changes in Early Stages of Alzheimer’s Disease
  • 2024
  • Ingår i: Journal of Neuroscience. - 0270-6474. ; 44:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have shown white matter (WM) abnormalities in Alzheimer’s disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aβ-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aβ-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.
  •  
2.
  • Coomans, Emma M., et al. (författare)
  • Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation
  • 2024
  • Ingår i: Brain. - 0006-8950. ; 147:3, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrovascular pathology often co-exists with Alzheimer’s disease pathology and can contribute to Alzheimer’s disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer’s disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-β pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-β pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ε4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-β and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ε4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-β pathology on greater baseline tau load (β = 0.68, P < 0.001) and longitudinal tau accumulation (β = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-β on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-β on longitudinal tau (β = −0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-β pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (β = 0.38, P < 0.001) and between infarcts and plaque density (β = −0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology—in the presence of amyloid-β pathology—modifies tau accumulation in early stages of Alzheimer’s disease. More specifically, the co-occurrence of microbleeds and amyloid-β pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer’s disease.
  •  
3.
  • Jakabek, David, et al. (författare)
  • Structural and microstructural thalamocortical network disruption in sporadic behavioural variant frontotemporal dementia
  • 2023
  • Ingår i: NeuroImage: Clinical. - 2213-1582. ; 39, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Using multi-block methods we combined multimodal neuroimaging metrics of thalamic morphology, thalamic white matter tract diffusion metrics, and cortical thickness to examine changes in behavioural variant frontotemporal dementia. (bvFTD). Method: Twenty-three patients with sporadic bvFTD and 24 healthy controls underwent structural and diffusion MRI scans. Clinical severity was assessed using the Clinical Dementia Rating scale and behavioural severity using the Frontal Behaviour Inventory by patient caregivers. Thalamic volumes were manually segmented. Anterior and posterior thalamic radiation fractional anisotropy and mean diffusivity were extracted using Tract-Based Spatial Statistics. Finally, cortical thickness was assessed using Freesurfer. We used shape analyses, diffusion measures, and cortical thickness as features in sparse multi-block partial least squares (PLS) discriminatory analyses to classify participants within bvFTD or healthy control groups. Sparsity was tuned with five-fold cross-validation repeated 10 times. Final model fit was assessed using permutation testing. Additionally, sparse multi-block PLS was used to examine associations between imaging features and measures of dementia severity. Results: Bilateral anterior-dorsal thalamic atrophy, reduction in mean diffusivity of thalamic projections, and frontotemporal cortical thinning, were the main features predicting bvFTD group membership. The model had a sensitivity of 96%, specificity of 68%, and was statistically significant using permutation testing (p = 0.012). For measures of dementia severity, we found similar involvement of regional thalamic and cortical areas as in discrimination analyses, although more extensive thalamo-cortical white matter metric changes. Conclusions: Using multimodal neuroimaging, we demonstrate combined structural network dysfunction of anterior cortical regions, cortical-thalamic projections, and anterior thalamic regions in sporadic bvFTD.
  •  
4.
  • Santillo, Alexander F, et al. (författare)
  • Divergent functional connectivity changes associated with white matter hyperintensities
  • 2024
  • Ingår i: NeuroImage. - 1095-9572. ; 296
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.
  •  
5.
  • Spotorno, Nicola, et al. (författare)
  • Astrocytic function is associated with both amyloid-β and tau pathology in non-demented APOE 4 carriers
  • 2022
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of evidence suggests that astrocytes play a major role in the pathophysiology of Alzheimer's disease. Given that APOE is primarily expressed in astrocytes, these cells might be an important link between the APOE ϵ4 allele and the development of Alzheimer's disease pathology. Here, we investigate this hypothesis in vivo by measuring myo-inositol, a metabolite involved in astrocytic functions, with magnetic resonance spectroscopy. Currently, there is conflicting evidence regarding the relationship between APOE ϵ4 and myo-inositol concentration. Furthermore, data supporting a relationship between APOE ϵ4, myo-inositol and Alzheimer's disease pathology (amyloid-beta and tau proteins) in the preclinical stage of Alzheimer's disease are limited. A previous study revealed differences in myo-inositol levels between APOE ϵ4 carriers and non-carriers already in preclinical Alzheimer's disease participants. However, other reports showed no impact of APOE genotype on the association between myo-inositol and the rate of amyloid-beta accumulation. In the present study, we determined the effect of APOE genotype on the association between myo-inositol and both amyloid-β and tau deposition quantified by PET in 428 cognitively unimpaired elderly and patients with mild cognitive impairment from the Swedish BioFINDER-2 cohort. APOE genotype impacted the associations between myo-inositol and amyloid-β pathology as revealed by an interaction effect between APOE genotype and levels of myo-inositol (P < 0.001) such that higher myo-inositol concentration was related to more amyloid-beta pathology in APOE ϵ4 carriers only. A similar interaction effect was also found when investigating the effect of APOE on the association between myo-inositol and tau pathology (P < 0.01). Focusing on the APOE ϵ4 subsample, myo-inositol partially (17%) mediated the association between amyloid-beta and tau pathology (P < 0.05). Furthermore, in a subgroup of participants with available plasma levels of glial fibrillary acidic protein, a marker of astroglial activation and astrocytosis, we found that glial fibrillary acidic protein correlated with myo-inositol only in APOE e4 carriers (APOE ϵ4 carriers: P < 0.01; APOE ϵ4 non-carriers: P > 0.8), suggesting that myo-inositol might reflect an aspect of the astrocytic involvement in Alzheimer's pathology which is specific to the impact of APOE ϵ4. Therefore, we suggest that myo-inositol is a candidate in vivo marker to study the impact of APOE ϵ4 on the interplay between astrocytes and the pathophysiology of Alzheimer's disease.
  •  
6.
  • Spotorno, Nicola, et al. (författare)
  • Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer’s disease
  • 2024
  • Ingår i: Brain. - 0006-8950. ; 147:3, s. 961-969
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-β (Aβ), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aβ/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aβ-positive but still tau-negative individuals. These increases were steeper in Aβ-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.
  •  
7.
  • Spotorno, Nicola, et al. (författare)
  • Diffusion tensor MRI to distinguish progressive supranuclear palsy from a-synucleinopathies
  • 2019
  • Ingår i: Radiology. - : Radiological Society of North America (RSNA). - 0033-8419 .- 1527-1315. ; 293:3, s. 646-653
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The differential diagnosis of progressive supranuclear palsy (PSP) and Lewy body disorders, which include Parkinson disease and dementia with Lewy bodies, is often challenging due to the overlapping symptoms. Purpose: To develop a diagnostic tool based on diffusion tensor imaging (DTI) to distinguish between PSP and Lewy body disorders at the individual-subject level. Materials and Methods: In this retrospective study, skeletonized DTI metrics were extracted from two independent data sets: the discovery cohort from the Swedish BioFINDER study and the validation cohort from the Penn Frontotemporal Degeneration Center (data collected between 2010 and 2018). Based on previous neuroimaging studies and neuropathologic evidence, a combination of regions hypothesized to be sensitive to pathologic features of PSP were identified (ie, the superior cerebellar peduncle and frontal white matter) and fractional anisotropy (FA) was used to compute an FA score for each individual. Classification performances were assessed by using logistic regression and receiver operating characteristic analysis. Results: In the discovery cohort, 16 patients with PSP (mean age 6 standard deviation, 73 years 6 5; eight women, eight men), 34 patients with Lewy body disorders (mean age, 71 years 6 6; 14 women, 20 men), and 44 healthy control participants (mean age, 66 years 6 8; 26 women, 18 men) were evaluated. The FA score distinguished between clinical PSP and Lewy body disorders with an area under the curve of 0.97 6 0.04, a specificity of 91% (31 of 34), and a sensitivity of 94% (15 of 16). In the validation cohort, 34 patients with PSP (69 years 6 7; 22 women, 12 men), 25 patients with Lewy body disorders (70 years 6 7; nine women, 16 men), and 32 healthy control participants (64 years 6 7; 22 women, 10 men) were evaluated. The accuracy of the FA score was confirmed (area under the curve, 0.96 6 0.04; specificity, 96% [24 of 25]; and sensitivity, 85% [29 of 34]). Conclusion: These cross-validated findings lay the foundation for a clinical test to distinguish progressive supranuclear palsy from Lewy body disorders.
  •  
8.
  • Spotorno, Nicola, et al. (författare)
  • Diffusion weighted magnetic resonance spectroscopy revealed neuronal specific microstructural alterations in Alzheimer’s disease
  • 2024
  • Ingår i: Brain Communications. - 2632-1297. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer’s disease, reconfiguration and deterioration of tissue microstructure occur before substantial degeneration become evident. We explored the diffusion properties of both water, a ubiquitous marker measured by diffusion MRI, and N-acetyl-aspartate, a neuronal metabolite probed by diffusion-weighted magnetic resonance spectroscopy, for investigating cortical microstructural changes downstream of Alzheimer’s disease pathology. To this aim, 50 participants from the Swedish BioFINDER-2 study were scanned on both 7 and 3 T MRI systems. We found that in cognitively impaired participants with evidence of both abnormal amyloid-beta (CSF amyloid-beta42/40) and tau accumulation (tau-PET), the N-acetyl-aspartate diffusion rate was significantly lower than in cognitively unimpaired participants (P < 0.05). This supports the hypothesis that intraneuronal tau accumulation hinders diffusion in the neuronal cytosol. Conversely, water diffusivity was higher in cognitively impaired participants (P < 0.001) and was positively associated with the concentration of myo-inositol, a preferentially astrocytic metabolite (P < 0.001), suggesting that water diffusion is sensitive to alterations in the extracellular space and in glia. In conclusion, measuring the diffusion properties of both water and N-acetyl-aspartate provides rich information on the cortical microstructure in Alzheimer’s disease, and can be used to develop new sensitive and specific markers to microstructural changes occurring during the disease course.
  •  
9.
  • Spotorno, Nicola, et al. (författare)
  • Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia
  • 2020
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 15:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofilaments are structural components of neurons and are particularly abundant in highly myelinated axons. The levels of neurofilament light chain (NfL) in both cerebrospinal fluid (CSF) and plasma have been related to degeneration in several neurodegenerative conditions including frontotemporal dementia (FTD) and NfL is currently considered as the most promising diagnostic and prognostic fluid biomarker in FTD. Although the location and function of filaments in the healthy nervous system suggests a link between increased NfL and white matter degeneration, such a claim has not been fully elucidated in vivo, especially in the context of FTD. The present study provides evidence of an association between the plasma levels of NfL and white matter involvement in behavioral variant FTD (bvFTD) by relating plasma concentration of NfL to diffusion tensor imaging (DTI) metrics in a group of 20 bvFTD patients. The results of both voxel-wise and tract specific analysis showed that increased plasma NfL concentration is associated with a reduction in fractional anisotropy (FA) in a widespread set of white matter tracts including the superior longitudinal fasciculus, the fronto-occipital fasciculus the anterior thalamic radiation and the dorsal cingulum bundle. Plasma NfL concentration also correlated with cortical thinning in a portion of the right medial prefrontal cortex and of the right lateral orbitofrontal cortex. These results support the hypothesis that blood NfL levels reflect the global level of neurodegeneration in bvFTD and help to advance our understanding of the association between this blood biomarker for FTD and the disease process.
  •  
10.
  • Spotorno, Nicola, et al. (författare)
  • Relationship between cortical iron and tau aggregation in Alzheimer's disease
  • 2020
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 143:5, s. 1341-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of evidence suggests that the dysregulation of neuronal iron may play a critical role in Alzheimer's disease. Recent MRI studies have established a relationship between iron accumulation and amyloid-β aggregation. The present study provides further insight demonstrating a relationship between iron and tau accumulation using magnetic resonance-based quantitative susceptibility mapping and tau-PET in n = 236 subjects with amyloid-β pathology (from the Swedish BioFINDER-2 study). Both voxel-wise and regional analyses showed a consistent association between differences in bulk magnetic susceptibility, which can be primarily ascribed to an increase in iron content, and tau-PET signal in regions known to be affected in Alzheimer's disease. Subsequent analyses revealed that quantitative susceptibility specifically mediates the relationship between tau-PET and cortical atrophy measures, thus suggesting a modulatory effect of iron burden on the disease process. We also found evidence suggesting the relationship between quantitative susceptibility and tau-PET is stronger in younger participants (age ≤ 65). Together, these results provide in vivo evidence of an association between iron deposition and both tau aggregation and neurodegeneration, which help advance our understanding of the role of iron dysregulation in the Alzheimer's disease aetiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy