SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arosio M.) srt2:(2010-2014)"

Sökning: WFRF:(Arosio M.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lambert, J-C, et al. (författare)
  • Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease
  • 2013
  • Ingår i: Molecular Psychiatry. - 1359-4184 .- 1476-5578. ; 18:4, s. 461-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n = 2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43-1.96); P=1.1 x 10(-10)). We finally searched for association between SNPs within the FRMD4A locus and A beta plasma concentrations in three independent non-demented populations (n = 2579). We reported that polymorphisms were associated with plasma A beta 42/A beta 40 ratio (best signal, P=5.4 x 10(-7)). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD.
  •  
2.
  •  
3.
  • Månsson, Cecilia, et al. (författare)
  • Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation.
  • 2014
  • Ingår i: Journal of Biological Chemistry. - : ASBMB. - 1083-351X. ; 289:45, s. 31066-31076
  • Tidskriftsartikel (refereegranskat)abstract
    • The human molecular chaperone protein DNAJB6 was recently found to inhibit the formation of amyloid fibrils from polyglutamine peptides associated with neurodegenerative disorders such as Huntington's disease. We show in the present study that DNAJB6 also inhibits amyloid formation by an even more aggregation-prone peptide (the amyloid-beta peptide, (Aβ42)(2), implicated in Alzheimer's disease)in a highly efficient manner. By monitoring fibril formation using Thioflavin T fluorescence and far-UV CD spectroscopy, we have found that the aggregation of Aβ42 is retarded by DNAJB6 in a concentration dependent manner, extending to very low sub-stoichiometric molar ratios of chaperone to peptide. Quantitative kinetic analysis and immunochemistry studies suggest that the high inhibitory efficiency is due to the interactions of the chaperone with aggregated forms of Aβ42 rather than the monomeric form of the peptide. This interaction prevents the growth of such species to longer fibrils and inhibits the formation of new amyloid fibrils through both primary and secondary nucleation. A low dissociation rate of DNAJB6 from Aβ42 aggregates leads to its incorporation into growing fibrils and hence to its gradual depletion from solution with time. When DNAJB6 is eventually depleted, fibril proliferation takes place, but the inhibitory activity can be prolonged by introducing DNAJB6 at regular intervals during the aggregation reaction. These results reveal the highly efficacious mode of action of this molecular chaperone against protein aggregation, and demonstrate that the role of molecular chaperones can involve interactions with multiple aggregated species leading to the inhibition of both principal nucleation pathways through which aggregates are able to form.
  •  
4.
  • Lambert, Jean-Charles, et al. (författare)
  • The CALHM1 P86L Polymorphism is a Genetic Modifier of Age at Onset in Alzheimer's Disease : a Meta-Analysis Study
  • 2010
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 22:1, s. 247-255
  • Tidskriftsartikel (refereegranskat)abstract
    • The only established genetic determinant of non-Mendelian forms of Alzheimer's disease (AD) is the epsilon 4 allele of the apolipoprotein E gene (APOE). Recently, it has been reported that the P86L polymorphism of the calcium homeostasis modulator 1 gene (CALHM1) is associated with the risk of developing AD. In order to independently assess this association, we performed a meta-analysis of 7,873 AD cases and 13,274 controls of Caucasian origin (from a total of 24 centers in Belgium, Finland, France, Italy, Spain, Sweden, the UK, and the USA). Our results indicate that the CALHM1 P86L polymorphism is likely not a genetic determinant of AD but may modulate age of onset by interacting with the effect of the epsilon 4 allele of the APOE gene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy