SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bezard Erwan) srt2:(2006-2009)"

Sökning: WFRF:(Bezard Erwan) > (2006-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kultima, Kim, et al. (författare)
  • Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis : A proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson's disease using DIGE
  • 2006
  • Ingår i: BMC Bioinformatics. - 1471-2105 .- 1471-2105. ; 7, s. 475-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Two-Dimensional Difference In Gel Electrophoresis (2D-DIGE) is a powerful tool for measuring differences in protein expression between samples or conditions. However, to remove systematic variability within and between gels the data has to be normalized. In this study we examined the ability of four existing and four novel normalization methods to remove systematic bias in data produced with 2D-DIGE. We also propose a modification of an existing method where the statistical framework determines whether a set of proteins shows an association with the predefined phenotypes of interest. This method was applied to our data generated from a monkey model (Macaca fascicularis) of Parkinson's disease. Results: Using 2D-DIGE we analysed the protein content of the striatum from 6 control and 21 MPTP-treated monkeys, with or without de novo or long-term L-DOPA administration. There was an intensity and spatial bias in the data of all the gels examined in this study. Only two of the eight normalization methods evaluated ('2D loess+scale' and 'SC-2D+quantile') successfully removed both the intensity and spatial bias. In 'SC-2D+quantile' we extended the commonly used loess normalization method against dye bias in two-channel microarray systems to suit systems with three or more channels. Further, by using the proposed method, Differential Expression in Predefined Proteins Sets (DEPPS), several sets of proteins associated with the priming effects of L-DOPA in the striatum in parkinsonian animals were identified. Three of these sets are proteins involved in energy metabolism and one set involved proteins which are part of the microtubule cytoskeleton. Conclusion: Comparison of the different methods leads to a series of methodological recommendations for the normalization and the analysis of data, depending on the experimental design. Due to the nature of 2D-DIGE data we recommend that the p-values obtained in significance tests should be used as rankings only. Individual proteins may be interesting as such, but by studying sets of proteins the interpretation of the results are probably more accurate and biologically informative.
  •  
3.
  • Munoz, Ana, et al. (författare)
  • Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia.
  • 2008
  • Ingår i: Brain. - : Oxford University Press. - 1460-2156. ; 131, s. 3380-3394
  • Tidskriftsartikel (refereegranskat)abstract
    • Appearance of dyskinesia is a common problem of long-term l-DOPA treatment in Parkinson's disease patients and represents a major limitation for the pharmacological management of the motor symptoms in advanced disease stages. We have recently demonstrated that dopamine released from serotonin neurons is responsible for l-DOPA-induced dyskinesia in 6-hydroxydopamine (6-OHDA)-lesioned rats, raising the possibility that blockade of serotonin neuron activity by combination of 5-HT(1A) and 5-HT(1B) agonists could reduce l-DOPA-induced dyskinesia. In the present study, we have investigated the efficacy of 5-HT(1A) and 5-HT(1B) agonists to counteract l-DOPA-induced dyskinesia in 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-treated macaques, the gold standard model of Parkinson's disease. In addition, we have studied the ability of this treatment to prevent development of l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. The results demonstrate the existence of a potent synergistic effect between 5-HT(1A) and 5-HT(1B) agonists in their ability to dampen l-DOPA-induced dyskinesia in the MPTP-treated macaques. Sub-threshold doses of the drugs, which individually produced no effect, were able to reduce the abnormal involuntary movements by up to 80% when administered in combination, without affecting the anti-parkinsonian properties of l-DOPA. Furthermore, chronic administration of low doses of the 5-HT(1) agonists in combination was able to prevent development of dyskinesia, and reduce the up-regulation of FosB after daily treatment with l-DOPA in the rat 6-OHDA model. Our results support the importance of a clinical investigation of the effect of 5-HT(1A) and 5-HT(1B) agonists, particularly in combination, in dyskinetic l-DOPA-treated Parkinson's disease patients.
  •  
4.
  • Scholz, Birger, et al. (författare)
  • Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure
  • 2008
  • Ingår i: PLoS ONE. - 1932-6203. ; 3:2, s. e1589-
  • Tidskriftsartikel (refereegranskat)abstract
    • L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it.
  •  
5.
  • Schuster, Stefan, et al. (författare)
  • Antagonizing L-type Ca2+ Channel Reduces Development of Abnormal Involuntary Movement in the Rat Model of L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia
  • 2009
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223. ; 65:6, s. 518-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease (PD) leads to debilitating involuntary movements, termed L-DOPA-induced dyskinesia. Striatofugal medium spiny neurons (MSN) lose their dendritic spines and cortico-striatal glutamatergic synapses in PD and in experimental models of DA depletion. This loss of connectivity is triggered by a dysregulation of intraspine Cav1.3 L-type Ca2+ channels. Here we address the possible implication of DA denervation-induced spine pruning in the development of L-DOPA-induced dyskinesia. Methods: The L-type Ca2+ antagonist, isradipine was subcutaneously delivered to rats at the doses of .05, .1, or .2 mg/kg/day, for 4 weeks, starting the day after a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion. Fourteen days later, L-DOPA treatment was initiated. Results: Isradipine-treated animals displayed a dose-dependent reduction in L-DOPA-induced rotational behavior and abnormal involuntary movements. Dendritic spine counting at electron microscopy level showed that isradipine (.2 mg/kg/day) prevented the 6-OHDA-induced spine loss and normalized preproenkephalin-A messenger RNA expression. Involuntary movements were not reduced when isradipine treatment was started concomitantly with L-DOPA. Conclusions: These results indicate that isradipine, at a therapeutically relevant dose, might represent a treatment option for preventing L-DOPA-induced dyskinesia in PD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy