1. |
- Chand, Vikas, et al.
(författare)
-
Violation of Synchrotron Line of Death by the Highly Polarized GRB 160802A
- 2018
-
Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 862:2
-
Tidskriftsartikel (refereegranskat)abstract
- GRB 160802A is one of the brightest gamma-ray bursts (GRBs) observed by the Fermi Gamma-ray Burst Monitor (GBM) in the energy range of 10-1000 keV, while at the same time it is surprisingly faint at energies greater than or similar to 2 MeV. An observation with the AstroSat/CZT Imager also provides the polarization that helps in constraining different prompt emission models using the novel joint spectra-polarimetric data. We analyze the Fermi/GBM data, and find two main bursting episodes that are clearly separated in time, one of which is particularly faint in higher energies and having certain differences in their spectra. The spectrum in general shows a hard-to-soft evolution in both the episodes. Only the later part of the first episode shows intensity tracking behavior corresponding to multiple pulses. The photon index of the spectrum is hard, and in over 90% cases, crosses even the slow cooling limit (alpha = -2/3) of an optically thin synchrotron shock model. Though such hard values are generally associated with a sub-dominant thermal emission, such a component is not statistically required in our analysis. In addition, the measured polarization in 100-300 keV is too high, pi = 85 +/- 29%, to be accommodated in such a scenario. Jitter radiation, which allows a much harder index up to alpha = + 0.5, in principle can produce high polarization, but only beyond the spectral peak, which in our case lies close to 200-300 keV during the time when most of the polarization signal is obtained. The spectro-polarimetric data seems to be consistent with a subphotospheric dissipation process occurring within a narrow jet with a sharp drop in emissivity beyond the jet edge, and viewed along its boundary.
|
|
2. |
- Mooley, K., et al.
(författare)
-
A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
- 2018
-
Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 554:7691, s. 207-210
-
Tidskriftsartikel (refereegranskat)abstract
- GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
|
|