SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dekker Cees) srt2:(2015)"

Sökning: WFRF:(Dekker Cees) > (2015)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belkin, Maxim, et al. (författare)
  • Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA
  • 2015
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 9:11, s. 10598-10611
  • Tidskriftsartikel (refereegranskat)abstract
    • With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization.
  •  
2.
  • Li, Yi, et al. (författare)
  • Photoresistance Switching of Plasmonic Nanopores
  • 2015
  • Ingår i: Nano letters (Print). - : American Chemical Society. - 1530-6984 .- 1530-6992. ; 15:1, s. 776-782
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (similar to 12 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.
  •  
3.
  • Pud, Sergii, et al. (författare)
  • Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown
  • 2015
  • Ingår i: Nano letters (Print). - 1530-6984 .- 1530-6992. ; 15:10, s. 7112-7117
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel cost-efficient method for the fabrication of high-quality self-aligned plasmonic nanopores by means of an optically controlled dielectric breakdown. Excitation of a plasmonic bowtie nanoantenna on a dielectric membrane localizes the high-voltage-driven breakdown of the membrane to the hotspot of the enhanced optical field, creating a nanopore that is automatically self-aligned to the plasmonic hotspot of the bowtie. We show that the approach provides precise control over the nanopore size and that these plasmonic nanopores can be used as single molecule DNA sensors with a performance matching that of TEM-drilled nanopores. The principle of optically controlled breakdown can also be used to fabricate nonplasmonic nanopores at a controlled position. Our novel fabrication process guarantees alignment of the nanopore with the optical hotspot of the nanoantenna, thus ensuring that pore-translocating biomolecules interact with the concentrated optical field that can be used for detection and manipulation of analytes.
  •  
4.
  • Verschueren, Daniel V, et al. (författare)
  • Temperature dependence of DNA translocations through solid-state nanopores
  • 2015
  • Ingår i: Nanotechnology. - 0957-4484 .- 1361-6528. ; 26, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to gain a better physical understanding of DNA translocations through solid-state nanopores, we study the temperature dependence of λ-DNA translocations through 10 nm diameter silicon nitride nanopores, both experimentally and theoretically. The measured ionic conductance G, the DNA-induced ionic-conductance blockades [Formula: see text] and the event frequency Γ all increase with increasing temperature while the DNA translocation time τ decreases. G and [Formula: see text] are accurately described when bulk and surface conductances of the nanopore are considered and access resistance is incorporated appropriately. Viscous drag on the untranslocated part of the DNA coil is found to dominate the temperature dependence of the translocation times and the event rate is well described by a balance between diffusion and electrophoretic motion. The good fit between modeled and measured properties of DNA translocations through solid-state nanopores in this first comprehensive temperature study, suggest that our model captures the relevant physics of the process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy