1. 
 Aghanim, N., et al.
(författare)

Planck 2018 results V. CMB power spectra and likelihoods
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l< 30) and high (l >= 30) multipoles, implementing several methodological and dataanalysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The lowmultipole EE crossspectra from the 100 GHz and 143 GHz data give a constraint on the Lambda CDM reionization opticaldepth parameter tau to better than 15% (in combination with the TT lowl data and the highl temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with tau. We also update the weaker constraint on tau from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperaturetopolarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the Lambda CDM constraints on the parameters theta(MC), omega(c), omega(b), and H0 by more than 30%, and n(s) by more than 20% compared to TTonly constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different highmultipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 sigma level on the Lambda CDM parameters, as well as classical singleparameter extensions for the joint likelihood (to be compared to the 0.3 sigma levels we achieved in 2015 for the temperature data alone on Lambda CDM only). Minor curiosities already present in the previous releases remain, such as the differences between the bestfit Lambda CDM parameters for the l< 800 and l> 800 ranges of the power spectrum, or the preference for more smoothing of the powerspectrum peaks than predicted in Lambda CDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.


2. 
 Aghanim, N., et al.
(författare)

Planck 2018 results VIII. Gravitational lensing
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5 sigma to 9 sigma. Combined with temperature, lensing is detected at 40 sigma. We present an extensive set of tests of the robustness of the lensingpotential power spectrum, and construct a minimumvariance estimator likelihood over lensing multipoles 8 <= L <= 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the Lambda CDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains (8)Omega (0.25)(m) = 0.589 +/ 0.020 sigma 8 Omega m 0.25 = 0.589 +/ 0.020 (1 sigma errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, sigma (8)=0.811 +/ 0.019, H0 = 67.9(1.3)(+1.2) km s(1) Mpc(1) H 0 = 67 . 9  1.3 + 1.2 .> km s  1 . Mpc  1 , and Omega (m) = 0.303(0.018)(+0.016) Omega m = 0 . 303  0.018 + 0.016 . Combining with Planck CMB power spectrum data, we measure sigma (8) to better than 1% precision, finding sigma (8)=0.811 +/ 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in sigma (8)Omega (m) space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensingonly parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of highredshift matter, we make a combined Planckonly estimate of the lensing potential over 60% of the sky with considerably more smallscale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensinginduced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.


3. 
 Aghanim, N., et al.
(författare)

Planck 2018 results I. Overview and the cosmological legacy of Planck
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, highresolution, allsky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the bestdetermined parameter (theta (*)) now known to 0.03%. We describe the multicomponent sky as seen by Planck, the success of the Lambda CDM model, and the connection to lowerredshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the largescale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.


4. 
 Aghanim, N., et al.
(författare)

Planck 2018 results VI. Cosmological parameters
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We present cosmological parameter results from the final fullmission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of largescale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the smallscale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatiallyflat 6parameter Lambda CDM cosmology having a powerlaw spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/ 0.001, baryon density Omega (b)h(2)=0.0224 +/ 0.0001, scalar spectral index n(s)=0.965 +/ 0.004, and optical depth tau =0.054 +/ 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/ 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the baseLambda CDM cosmology, the inferred (modeldependent) lateUniverse parameters are: Hubble constant H0=(67.4 +/ 0.5) km s(1) Mpc(1); matter density parameter Omega (m)=0.315 +/ 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/ 0.006. We find no compelling evidence for extensions to the baseLambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering singleparameter extensions) we constrain the effective extra relativistic degrees of freedom to be Neff=2.99 +/ 0.17, in agreement with the Standard Model prediction Neff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)< 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/ 0.002. Also combining with Type Ia supernovae (SNe), the darkenergy equation of state parameter is measured to be w(0)=1.03 +/ 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely powerlaw primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensortoscalar ratio r(0.002)< 0.06. Standard bigbang nucleosynthesis predictions for the helium and deuterium abundances for the baseCDM cosmology are in excellent agreement with observations. The Planck baseLambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combinedprobe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.


5. 
 Akrami, Y., et al.
(författare)

Planck 2018 results IV. Diffuse component separation
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We present fullsky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower largescale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available endtoend simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degrees regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta (d)=1.55 +/ 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta (s)=3.1 +/ 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased singlebolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects.


6. 
 Akrami, Y., et al.
(författare)

Planck 2018 results IX. Constraints on primordial nonGaussianity
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We analyse the Planck fullmission cosmic microwave background (CMB) temperature and Emode polarization maps to obtain constraints on primordial nonGaussianity (NG). We compare estimates obtained from separable templatefitting, binned, and optimal modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following final results: (local)(NL) = 0.9 +/ 5.1 f NL local =  0.9 +/ 5.1 ; f(NL)(equil) = 26 +/ 47 f NL equil =  26 +/ 47 ; and f(NL)(ortho) = 38 +/ 24 f NL ortho =  38 +/ 24 (68% CL, statistical). These results include lowmultipole (4 <= l< 40) polarization data that are not included in our previous analysis. The results also pass an extensive battery of tests (with additional tests regarding foreground residuals compared to 2015), and they are stable with respect to our 2015 measurements (with small fluctuations, at the level of a fraction of a standard deviation, which is consistent with changes in data processing). Polarizationonly bispectra display a significant improvement in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperaturebased results and they give excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider a large number of additional cases, such as scaledependent feature and resonance bispectra, isocurvature primordial NG, and paritybreaking models, where we also place tight constraints but do not detect any signal. The nonprimordial lensing bispectrum is, however, detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5. Beyond estimates of individual shape amplitudes, we also present modelindependent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum shape is g(NL)(local) = (5.8 +/ 6.5) x 10(4) g NL local = (  5.8 +/ 6.5 ) x 10 4 (68% CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of different earlyUniverse scenarios that generate primordial NG, including general singlefield models of inflation, multifield models (e.g. curvaton models), models of inflation with axion fields producing parityviolation bispectra in the tensor sector, and inflationary models involving vectorlike fields with directionallydependent bispectra. Our results provide a highprecision test for structureformation scenarios, showing complete agreement with the basic picture of the Lambda CDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial seed perturbations.


7. 
 Aghanim, N., et al.
(författare)

Planck 2018 results III. High Frequency Instrument data processing and frequency maps
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using PlanckHFI data. This paper presents an extensive analysis of systematic effects, including the use of endtoend simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100353 GHz reduces intensitytopolarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 mu K, an accuracy of order 10(4). This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main highfrequency foregrounds by extracting the bandpassmismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Endtoend simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analoguetodigital convertor nonlinearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10(4) level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10(3) level.


8. 
 Aghanim, N., et al.
(författare)

Planck 2018 results XII. Galactic astrophysics using polarized dust emission
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 Observations of the submillimetre emission from Galactic dust, in both total intensity I and polarization, have received tremendous interest thanks to the Planck fullsky maps. In this paper we make use of such fullsky maps of dust polarized emission produced from the third public release of Planck data. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present fullsky maps of the dust polarization fraction p, polarization angle psi, and dispersion function of polarization angles ?. The joint distribution (onepoint statistics) of p and NH confirms that the mean and maximum polarization fractions decrease with increasing NH. The uncertainty on the maximum observed polarization fraction, (max) = 22.0(1.4)(+3.5) p max = 22 . 0  1.4 + 3.5 % at 353 GHz and 80 ' resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour between p and ? found earlier is seen to be present at high latitudes. This follows the ?proportional to p(1) relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties of p, psi, and ? for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map ?xp, looking for residual trends. While the polarization fraction p decreases by a factor of 34 between NH=10(20) cm(2) and NH=2x10(22) cm(2), out of the Galactic plane, this product ?xp only decreases by about 25%. Because ? is independent of the grain alignment efficiency, this demonstrates that the systematic decrease in p with NH is determined mostly by the magneticfield structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of ?xp with the dust temperature Td, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fraction p and low polarization angle dispersion ? tend, on the contrary, to have colder dust than lines of sight with low p and high ?. We also compare the Planck thermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of the Planck beam. The two polarization emissiontoextinction ratios, RP/p and RS/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction, p(V)/E(BV), of 13% at high Galactic latitude, compatible with the polarization fraction p approximate to 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.


9. 
 Akrami, Y., et al.
(författare)

Planck 2018 results X. Constraints on inflation
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/ 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensortoscalar ratio, r(0.002)< 0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)< 0.056. In the framework of standard singlefield inflationary models with Einstein gravity, these results imply that: (a) the predictions of slowroll models with a concave potential, V(phi) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the nonparametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(1)k less than or similar to 0.2 Mpc(1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the nonadiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matterbaryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scaledependent dipolar modulation. All these findings support the key predictions of the standard singlefield inflationary models, which will be further tested by future cosmological observations.


10. 
 Akrami, Y., et al.
(författare)

Planck 2018 results VII. Isotropy and statistics of the CMB
 2020

Ingår i: Astronomy and Astrophysics.  : EDP Sciences.  00046361 . 14320746. ; 641

Tidskriftsartikel (refereegranskat)abstract
 Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the Lambda CDM cosmological model, yet also confirm the presence of several socalled anomalies on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, Q and U, or the Emode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of nonGaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., l less than or similar to 400). In this regime, no unambiguous detections of cosmological nonGaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the Lambda CDM cosmological model, and also gives a clear indication of how Planck provides stateoftheart measurements of CMB temperature and polarization on degree scales.

