1. |
- Perry, John R. B., et al.
(författare)
-
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche
- 2014
-
Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 514:7520, s. 92-
-
Tidskriftsartikel (refereegranskat)abstract
- Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-causemortality(1). Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation(2,3), but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 x 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
|
|
2. |
- Purrington, Kristen S, et al.
(författare)
-
Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade.
- 2014
-
Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:22, s. 6034-6046
-
Tidskriftsartikel (refereegranskat)abstract
- Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2,156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n=39,067 cases; n=42,106 controls). SNPs in TACC2 (rs17550038: odds ratio (OR)=1.24, 95% CI 1.16-1.33, p=4.2x10(-10)) and EIF3H (rs799890: OR=1.07, 95% confidence interval (CI) 1.04-1.11, p=8.7x10(-6)) were significantly associated with risk of low grade breast cancer. The TACC2 signal was retained (rs17550038: OR=1.15, 95% CI 1.07-1.23, p=7.9x10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high grade breast cancer risk (p=2.1x10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
|
|
3. |
- Ghoussaini, Maya, et al.
(författare)
-
Genome-wide association analysis identifies three new breast cancer susceptibility loci
- 2012
-
Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:3, s. 312-318
-
Tidskriftsartikel (refereegranskat)abstract
- Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10−35), 12q24 (rs1292011; P = 4.3 × 10−19) and 21q21 (rs2823093; P = 1.1 × 10−12). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.
|
|
4. |
- Kirchhoff, Tomas, et al.
(författare)
-
Breast cancer risk and 6q22.33 : combined results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2
- 2012
-
Ingår i: PLOS ONE. - : Public library of science. - 1932-6203. ; 7:6
-
Tidskriftsartikel (refereegranskat)abstract
- Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00-1.06, p = 0.023). There was evidence for heterogeneity in the ORs among studies (I(2) = 49.3%; p = <0.004). In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80-1.00, p = 0.048), indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.
|
|
5. |
- Siddiq, Afshan, et al.
(författare)
-
A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11
- 2012
-
Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:24, s. 5373-5384
-
Tidskriftsartikel (refereegranskat)abstract
- Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P 1 10(-5) in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR 1.16; P 1.1 10(8)) but showed a weaker association with overall breast cancer (OR 1.08, P 1.3 10(6)) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR 1.01, P 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR 1.12; P 1.1 10(9)), and with both ER-positive (OR 1.09; P 1.5 10(5)) and ER-negative (OR 1.16, P 2.5 10(7)) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci.
|
|
6. |
- Stevens, Kristen N, et al.
(författare)
-
19p13.1 is a triple negative-specific breast cancer susceptibility locus
- 2012
-
Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 72, s. 1795-
-
Tidskriftsartikel (refereegranskat)abstract
- The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 - 1.15, p=3.49 x 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 - 1.31, p=2.22 x 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 - 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 - 1.33, p=3.31 x 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways.
|
|
7. |
- Antoniou, Antonis C., et al.
(författare)
-
A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population
- 2010
-
Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:10, s. 885-892
-
Tidskriftsartikel (refereegranskat)abstract
- Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (P-trend = 2.3 x 10(-9) to Ptrend = 3.9 x 10(-7)), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17-1.35; rs2363956 HR = 0.84, 95% CI 0.80-0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptor-negative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75-0.92, P-trend = 0.0003) and an association with estrogen receptor-positive disease in the opposite direction (OR = 1.07, 95% CI 1.01-1.14, P-trend = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (Ptrend = 1 x 10(-7) to Ptrend = 8 x 10(-5); rs2363956 per-allele OR = 0.80, 95% CI 0.74-0.87, P-trend = 1.1 x 10(-7)).
|
|
8. |
- Haiman, Christopher A., et al.
(författare)
-
A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer
- 2011
-
Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 43:12, s. 61-1210
-
Tidskriftsartikel (refereegranskat)abstract
- Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 x 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 x 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 x 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.
|
|
9. |
- Iles, Mark M., et al.
(författare)
-
The Effect on Melanoma Risk of Genes Previously Associated With Telomere Length
- 2014
-
Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 1460-2105 .- 0027-8874. ; 106:10, s. 267-267
-
Tidskriftsartikel (refereegranskat)abstract
- Telomere length has been associated with risk of many cancers, but results are inconsistent. Seven single nucleotide polymorphisms (SNPs) previously associated with mean leukocyte telomere length were either genotyped or well-imputed in 11 108 case patients and 13 933 control patients from Europe, Israel, the United States and Australia, four of the seven SNPs reached a P value under .05 (two-sided). A genetic score that predicts telomere length, derived from these seven SNPs, is strongly associated (P = 8.92x10(-9), two-sided) with melanoma risk. This demonstrates that the previously observed association between longer telomere length and increased melanoma risk is not attributable to confounding via shared environmental effects (such as ultraviolet exposure) or reverse causality. We provide the first proof that multiple germline genetic determinants of telomere length influence cancer risk.
|
|
10. |
- Barrett, Jennifer H., et al.
(författare)
-
Genome-wide association study identifies three new melanoma susceptibility loci
- 2011
-
Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 43:11, s. 1108-1113
-
Tidskriftsartikel (refereegranskat)abstract
- We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 x 10(-9)), an SNP in MX2 (rs45430, P = 2.9 x 10-9) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 x 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 x 10(-7) under a fixed-effects model and P = 1.2 x 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.
|
|