1. |
- Haiman, Christopher A., et al.
(författare)
-
A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer
- 2011
-
Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:12, s. 61-1210
-
Tidskriftsartikel (refereegranskat)abstract
- Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 x 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 x 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 x 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.
|
|
2. |
- Öberg, Christopher T, et al.
(författare)
-
Synthesis, biological evaluation, and structure-activity relationships of 2-[2-(benzoylamino)benzoylamino]benzoic acid analogues as inhibitors of adenovirus replication
- 2012
-
Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 55:7, s. 3170-3181
-
Tidskriftsartikel (refereegranskat)abstract
- 2-[2-Benzoylamino)benzoylamino]benzoic acid (1) was previously identified as a potent and nontoxic antiadenoviral compound ( Antimicrob. Agents Chemother. 2010 , 54 , 3871 ). Here, the potency of 1 was improved over three generations of compounds. We found that the ortho, ortho substituent pattern and the presence of the carboxylic acid of 1 are favorable for this class of compounds and that the direction of the amide bonds (as in 1) is obligatory. Some variability in the N-terminal moiety was tolerated, but benzamides appear to be preferred. The substituents on the middle and C-terminal rings were varied, resulting in two potent inhibitors, 35g and 35j, with EC(50) = 0.6 μM and low cell toxicity.
|
|