SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaudet D) ;srt2:(2005-2009)"

Sökning: WFRF:(Gaudet D) > (2005-2009)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Florez, J. C., et al. (författare)
  • Association testing of common variants in the insulin receptor substrate-1 gene (IRS1) with type 2 diabetes
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:6, s. 1209-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Activation of the insulin receptor substrate-1 (IRS1) is a key initial step in the insulin signalling pathway. Despite several reports of association of the G972R polymorphism in its gene IRS1 with type 2 diabetes, we and others have not observed this association in well-powered samples. However, other nearby variants might account for the putative association signal. Subjects and methods We characterised the haplotype map of IRS1 and selected 20 markers designed to capture common variations in the region. We genotyped this comprehensive set of markers in several family-based and case-control samples of European descent totalling 12,129 subjects. Results In an initial sample of 2,235 North American and Polish case-control pairs, the minor allele of the rs934167 polymorphism showed nominal evidence of association with type 2 diabetes (odds ratio [OR] 1.25, 95% CI 1.03-1.51, p=0.03). This association showed a trend in the same direction in 7,659 Scandinavian samples (OR 1.16, 95% CI 0.96-1.39, p=0.059). The combined OR was 1.20 (p=0.008), but statistical correction for the number of variants examined yielded a p value of 0.086. We detected no differences across rs934167 genotypes in insulin-related quantitative traits. Conclusion/interpretation Our data do not support an association of common variants in IRS1 with type 2 diabetes in populations of European descent.
  •  
3.
  • Florez, JC, et al. (författare)
  • High-density haplotype structure and association testing of the insulin-degrading enzyme (IDE) gene with type 2 diabetes in 4,206 people
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:1, s. 128-135
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-degrading enzyme is responsible for the intracellular proteolysis of insulin. Its gene IDE is located on chromosome 10, in an area with suggestive linkage to type 2 diabetes and related phenotypes. Due to the impact of genetic variants of this gene in rodents and the function of its protein product, it has been proposed as a candidate gene for type 2 diabetes. Various groups have explored the role of the common genetic variation of IDE on insulin resistance and reported associations of various single nucleotide polymorphisms (SNPs) and haplotypes on both type 2 diabetes and glycemic traits. We sought to characterize the haplotype structure of IDE in detail and replicate the association of common variants with type 2 diabetes, fasting insulin, fasting glucose, and insulin resistance. We assessed linkage disequilibrium, selected single-marker and multimarker tags, and genotyped these markers in several case-control and family-based samples totalling 4,206 Caucasian individuals. We observed no statistically significant evidence of association between single-marker or multimarker tests in IDE and type 2 diabetes. Nominally significant differences in quantitative traits are consistent with statistical noise. We conclude that common genetic variation at, IDE is unlikely to confer clinically significant risk of type 2 diabetes in Caucasians.
  •  
4.
  • Saxena, R, et al. (författare)
  • Comprehensive association testing of common mitochondrial DNA variation in metabolic disease
  • 2006
  • Ingår i: American Journal of Human Genetics. - 0002-9297. ; 79:1, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Many lines of evidence implicate mitochondria in phenotypic variation: ( a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; ( b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and ( c) common missense variants in the mitochondrial genome ( mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency > 1% in Europeans from > 900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation ( except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits ( body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.
  •  
5.
  • Sun, MW, et al. (författare)
  • Haplotype structures and large-scale association testing of the 5 ' AMP-activated protein kinase genes PRK4A2, PRKAB1, and PRK4B1 with type 2 diabetes
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:3, s. 849-855
  • Tidskriftsartikel (refereegranskat)abstract
    • AMP-activated protein kinase (AMPK) is a key molecular regulator of cellular metabolism, and its activity is induced by both metformin and thiazolidinedione antidiabetic medications. It has therefore been proposed both as a putative agent in the pathophysiology of type 2 diabetes and as a valid target for therapeutic intervention. Thus, the genes that encode the various AMPK subunits are intriguing candidates for the inherited basis of type 2 diabetes. We therefore set out to test for the association of common variants in the genes that encode three selected AMPK subunits with type 2 diabetes and related phenotypes. Of the seven genes that encode AMPK isoforms, we initially chose PRKAA2, PRKAB1, and PRKAB2 because of their higher prior probability of association with type 2 diabetes, based on previous reports of genetic linkage, functional molecular studies, expression patterns, and pharmacological evidence. We determined their haplotype structure, selected a subset of tag single nucleotide polymorphisms that comprehensively capture the extent of common genetic variation in these genes, and genotyped them in family-based and case/control samples comprising 4,206 individuals. Analysis of single-marker and multi-marker tests revealed no association with type 2 diabetes, fasting plasma glucose, or insulin sensitivity. Several nominal associations of variants in PRKAA2 and PRKAB1 with BMI appear to be consistent with statistical noise.
  •  
6.
  • Winckler, W, et al. (författare)
  • Association of common variation in the HNF1 alpha gene region with risk of type 2 diabetes
  • 2005
  • Ingår i: Diabetes. - 1939-327X. ; 54:8, s. 2336-2342
  • Tidskriftsartikel (refereegranskat)abstract
    • It is currently unclear how often genes that are mutated to cause rare, early-onset monogenic forms of disease also harbor common variants that contribute to the more typical polygenic form of each disease. The gene for MODY3 diabetes, HNF1 alpha, lies in a region that has shown linkage to late-onset type 2 diabetes (12q24, NIDDM2), and previous association studies have suggested a weak trend toward association for common missense variants in HNF1a with glucose-related traits. Based on genotyping of 79 common SNPs in the 118 kb spanning HNF1 alpha, we selected 21 haplotype tag single nucleotide polymorphisms (SNPs) and genotyped them in > 4,000 diabetic patients and control subjects from Sweden, Finland, and Canada. Several SNPs from the coding region and 5' of the gene demonstrated nominal association with type 2 diabetes, with the most significant marker (rs1920792) having an odds ratio of 1.17 and a P value of 0.002. We then genotyped three SNPs with the strongest evidence for association to type 2 diabetes (rs1920792, I27L, and A98V) in an additional 4,400 type 2 diabetic and control subjects from North America and Poland and compared our results with those of the original sample and of Weedon et al. None of the results were consistently observed across all samples, with the possible exception of a modest association of the rare (3-5%) A98V variant. These results indicate that common variants in HNF1 alpha either play no role in type 2 diabetes, a very small role, or a role that cannot be consistently observed without consideration of as yet unmeasured genetic or environmental modifiers.
  •  
7.
  • Winckler, W, et al. (författare)
  • Association testing of variants in the hepatocyte nuclear factor 4 alpha gene with risk of type 2 diabetes in 7,883 people
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:3, s. 886-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Two recent publications reported association of common polymorphisms in the P2 promoter of hepatocyte nuclear factor 4alpha (HNF4alpha) (the MODY1 gene) with risk for type 2 diabetes. We attempted to reproduce this putative association by genotyping 11 single nucleotide polymorphism (SNPs) spanning the HNF4a coding region and the P2 promoter in >3,400 patients and control subjects from Sweden, Finland, and Canada. One SNP that was consistently associated in the two previous reports (rs1884613, in the P2 promoter region) also trended in the same direction in our sample, albeit with a lower estimated odds ratio (OR) of 1.11 (P = 0.05, one-tailed). We genotyped this SNP (rs1884613) in an additional 4,400 subjects from North America and Poland. In this sample, the association was not confirmed and trended in the opposite direction (OR 0.88). Meta-analysis of our combined sample of 7,883 people (three times larger than the two initial reports combined) yielded an OR of 0.97 (P = 0.27). Finally, we provide an updated analysis of haplotype structure in the region to guide any further investigation of common variation in HNF4alpha. Although our combined results fail to replicate the previously reported association of common variants in HNF4alpha with risk for type 2 diabetes, we cannot exclude an effect smaller than that originally proposed, heterogeneity among samples, variation in as-yet-unmeasured genotypic or environmental modifiers, or true association secondary to linkage disequilibrium (LD) with as-yet-undiscovered variant(s) in the region.
  •  
8.
  • Campbell, Catarina D., et al. (författare)
  • Association studies of BMI and type 2 diabetes in the neuropeptide y pathway - A possible role for NPY2R as a candidate gene for type 2 diabetes in men
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:5, s. 1460-1467
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide Y (NPY) family of peptides and receptors regulate food intake. Inherited variation in this pathway could influence susceptibility to obesity and its complications, including type 2 diabetes. We genotyped a set of 71 single nucleotide polymorphisms (SNPs) that capture the most common variation in NPY, PPY, PYY, NPY1R, NPY2R, and NPY5R in 2,800 individuals of recent European ancestry drawn from the near extremes of BMI distribution. Five SNPs located upstream of NPY2R were nominally associated with BMI in men (P values = 0.001-0.009, odds ratios [ORs] 1.27-1.34). No association with BMI was observed in women, and no consistent associations were observed for other genes in this pathway. We attempted to replicate the association with BMI in 2,500 men and tested these SNPs for association with type 2 diabetes in 8,000 samples. We observed association with BMI in men in only one replica- tion sample and saw no association in the combined replication samples (P = 0.154, OR = 1.09). Finally, a 9% haplotype was associated with type 2 diabetes in men (P = 1.73 x 10(-4), OR = 1.36) and not in women. Variation in this pathway likely does not have a major influence on BMI, although small effects cannot be ruled out; NPY2R should be considered a candidate gene for type 2 diabetes in men.
  •  
9.
  • Florez, J C, et al. (författare)
  • Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people
  • 2005
  • Ingår i: Diabetes. - 1939-327X. ; 54:6, s. 1884-1891
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein tyrosine phosphatase (PTP)-1B, encoded by the PTPN1 gene, inactivates the insulin signal transduction cascade by dephosphorylating phosphotyrosine residues in insulin signaling molecules. Due to its chromosomal location under a chromosome 20 linkage peak and the metabolic effects of its absence in knockout mice, it is a candidate gene for type 2 diabetes. Recent studies have associated common sequence variants in PTPN1 with type 2 diabetes and diabetes-related phenotypes. We sought to replicate the association of common single nucleotide polymorphisms (SNPs) and haplotypes in PTPN1 with type 2 diabetes, fasting plasma glucose, and insulin sensitivity in a large collection of subjects. We assessed linkage disequilibrium, selected tag SNPs, and typed these markers in 3,347 cases of type 2 diabetes and 3,347 control subjects as well as 1,189 siblings discordant for type 2 diabetes. Despite power estimated at > 95% to replicate the previously reported associations, no statistically significant evidence of association was observed between PTPN1 SNPs or common haplotypes with type 2 diabetes or with diabetic phenotypes.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy