SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grinberg Daniel) srt2:(2010-2014)"

Sökning: WFRF:(Grinberg Daniel) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grinberg, Marianna, et al. (författare)
  • Toxicogenomics directory of chemically exposed human hepatocytes
  • 2014
  • Ingår i: Archives of Toxicology. - 1432-0738 .- 0340-5761. ; 88:12, s. 2261-2287
  • Tidskriftsartikel (refereegranskat)abstract
    • A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory (http://wiki.toxbank.net/toxicogenomics-map/) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.
  •  
2.
  • Serra-Vinardell, Jenny, et al. (författare)
  • Selective chaperone effect of aminocyclitol derivatives on G202R and other mutant glucocerebrosidases causing Gaucher disease
  • 2014
  • Ingår i: International Journal of Biochemistry and Cell Biology. - 1357-2725 .- 1878-5875. ; 54, s. 245-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaucher disease is an autosomal recessive lysosomal disorder characterized by the accumulation of glucosylceramide as a result of a deficiency of the enzyme glucocerebrosidase. Several competitive glucocerebrosidase inhibitors are able to act as pharmacological chaperones for an efficient rescue of the mutated, misfolded forms of the enzyme. Along this line, we report in this work on the ability of several aminocyclitols to increase the residual glucocerebrosidase activity in patient fibroblasts with different genotypes. Some of the compounds were slightly active on fibroblasts bearing some mutations, including the highly prevalent N370S mutation. All compounds were highly active as enzyme activity enhancers on fibroblasts from Gaucher disease patients containing the G202R mutation. Moreover, using the novel tagged sphingolipid omega-azidosphingosine, a reduction in the tagged glucosylceramide accumulation was also observed for selected aminocyclitols. Attempts to explain the activity impairment observed in glucocerebrosidase bearing the G202R mutation by comparative molecular dynamic studies on wild type and the G202R mutated proteins (free and isofagomine-bound, in both cases) were unsuccessful. Under the simulation conditions used, no clear effect of the G202R mutation neither over the global structure of the protein nor on the loops that constitute the glucocerebrosidase active site was observed. Since the G202R residue is located on the protein surface, altered protein-membrane or protein-protein interactions could account for the observed differences. In conclusion, we have tested novel compounds that have shown some chaperone effect on particular glucocerebrosidase mutant enzymes, supporting the enhancement therapy as an alternative approach for Gaucher disease. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy