SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hattersley Andrew T) srt2:(2005-2009)"

Sökning: WFRF:(Hattersley Andrew T) > (2005-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loos, Ruth J. F., et al. (författare)
  • Common variants near MC4R are associated with fat mass, weight and risk of obesity
  • 2008
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 40:6, s. 768-775
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.
  •  
2.
  • Salanti, Georgia, et al. (författare)
  • Underlying Genetic Models of Inheritance in Established Type 2 Diabetes Associations
  • 2009
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262. ; 170:5, s. 537-545
  • Forskningsöversikt (refereegranskat)abstract
    • For most associations of common single nucleotide polymorphisms (SNPs) with common diseases, the genetic model of inheritance is unknown. The authors extended and applied a Bayesian meta-analysis approach to data from 19 studies on 17 replicated associations with type 2 diabetes. For 13 SNPs, the data fitted very well to an additive model of inheritance for the diabetes risk allele; for 4 SNPs, the data were consistent with either an additive model or a dominant model; and for 2 SNPs, the data were consistent with an additive or recessive model. Results were robust to the use of different priors and after exclusion of data for which index SNPs had been examined indirectly through proxy markers. The Bayesian meta-analysis model yielded point estimates for the genetic effects that were very similar to those previously reported based on fixed- or random-effects models, but uncertainty about several of the effects was substantially larger. The authors also examined the extent of between-study heterogeneity in the genetic model and found generally small between-study deviation values for the genetic model parameter. Heterosis could not be excluded for 4 SNPs. Information on the genetic model of robustly replicated association signals derived from genome-wide association studies may be useful for predictive modeling and for designing biologic and functional experiments.
  •  
3.
  • Weedon, Michael N., et al. (författare)
  • A common variant of HMGA2 is associated with adult and childhood height in the general population
  • 2007
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 39:10, s. 1245-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P= 4x10(-8)). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P= 3x10(-11), overall P= 4x10(-16), including the genome-wide association data). We also observed the association in children (P=1x 10(-6), N= 6,827) and a tall/short case-control study (P= 4x10(-6), N=3,207). We estimate that rs1042725 explains similar to 0.3% of population variation in height (similar to 0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitative traits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.
  •  
4.
  • Willer, Cristen J., et al. (författare)
  • Six new loci associated with body mass index highlight a neuronal influence on body weight regulation
  • 2009
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 41:1, s. 25-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
  •  
5.
  • Tsuchiya, Takafumi, et al. (författare)
  • Association of the calpain-10 gene with type 2 diabetes in Europeans: Results of pooled and meta-analyses
  • 2006
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier. - 1096-7192. ; 89:1-2, s. 174-184
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted pooled and meta-analyses of the association of the calpain-10 gene (CAPN10) polymorphisms SNP-43, Indel-19 and SNP-63 individually and as haplotypes with type 2 diabetes (T2D) in 3237 patients and 2935 controls of European ancestry. In the pooled analyses, the common SNP-43*G allele was associated with modest but statistically significant increased risk of T2D (odds ratio (OR) = 1.11 (95% confidence interval (0), 1.02-1.20), P = 0.01). Two haplotype combinations were associated with increased risk of T2D) (1-2-1/1-2-1, OR = 1.20 (1.03-1.41), P = 0.02; and 1-1-2/1-2-1, OR = 1.26 (1.01-1.59), P = 0.04) and one with decreased risk (1-1-1/2-2-1, OR = 0.86 (0.75-0.99), P = 0.03). The meta-analysis also showed a significant effect of the 1-2-1/1-2-1 haplogenotype on risk (OR = 1.25 (1.05-1.50), P = 0.01). However, there was evidence for heterogeneity with respect to this effect (P = 0.06). The heterogeneity appeared to be due to data sets in which the cases were selected from samples used in linkage studies of T2D. Using only the population-based case-control samples removed the heterogeneity (P = 0.89) and strengthened the evidence for association with T2D) in both the pooled (SNP-43*G, OR = 1.19 (1.07-1.32), P = 0.001; 1-2-1/1-2-1 haplogenotype, OR = 1.46 (1.19-1.78), P = 0.0003; 1-1-2/1-2-1 haplogenotype, OR = 1.52 (1.12-2.06), P = 0.007; and 1-1-1/2-2-1 haplogenotype, OR = 0.83 (0.70-0.99), P = 0.03) and the meta-analysis (SNP-43*G, OR = 1.18 (1.05-1.32), P = 0.005; 1-2-1/1-2-1 haplogenotype, OR = 1.68 (1.33-2.11), P = 0.00001). The pooled and meta-analyses as well as the linkage disequilibrium and haplotype diversity studies suggest a role for genetic variation in CAPN10 affecting risk of T2D in Europeans. (c) 2006 Elsevier Inc. All rights reserved.
  •  
6.
  • Zeggini, Eleftheria, et al. (författare)
  • Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  • 2008
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 40:5, s. 638-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)(1-11). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and similar to 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P=5.0 x 10(-14)), CDC123-CAMK1D (P=1.2 x 10(-10)), TSPAN8-LGR5 (P=1.1 x 10(-9)), THADA (P=1.1 x 10(-9)), ADAMTS9 (P=1.2 x 10(-8)) and NOTCH2 (P=4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
  •  
7.
  •  
8.
  • Winckler, Wendy, et al. (författare)
  • Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X. ; 56:3, s. 685-693
  • Tidskriftsartikel (refereegranskat)abstract
    • An important question in human genetics is the extent to which genes causing monogenic forms of disease harbor common variants that may contribute to the more typical form of that disease. We aimed to comprehensively evaluate the extent to which common variation irk the six known maturity-onset diabetes of the young (MODY) genes, which cause a monogenic form of type 2 diabetes, is associated with type 2 diabetes. Specifically, we determined patterns of common sequence variation in the genes encoding Gck, lpf1, Tcf2, and NeuroD1 (MODY2 and MODY4-MODY6, respectively), selected a comprehensive set of 107 tag single nucleotide polymorphisms (SNPs) that captured common variation, and genotyped each in 4,206 patients and control subjects from Sweden, Finland, and Canada (including family-based studies and unrelated case-control subjects). All SNPs with a nominal P value < 0.1 for association to type 2 diabetes in this initial screen were then genotyped in an additional 4,470 subjects from North America and Poland. Of 30 nominally significant SNPs from the initial sample, 8 achieved consistent results in the replication sample. We found the strongest effect at rs757210 in intron 2 of TCF2, with corrected P values < 0.01 for an odds ratio (OR) of 1.13. This association was observed again in an independent sample of 5,891 unrelated case and control subjects and 500 families from the U.K., for an overall OR of 1.12 and a P value < 10(-6) in > 15,000 samples. We combined these results with our previous studies on HNF4 alpha and TCF1 and explicitly tested for gene-gene interactions among these variants and with several known type 2 diabetes susceptibility loci, and we found no genetic interactions between these six genes. We conclude that although rare variants in these six genes explain most cases of MODY, common variants in these same genes contribute very modestly, if at all, to the common form of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy