SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jugessur Astanand) srt2:(2021)"

Sökning: WFRF:(Jugessur Astanand) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Denault, William R P, et al. (författare)
  • A fast wavelet-based functional association analysis replicates several susceptibility loci for birth weight in a Norwegian population.
  • 2021
  • Ingår i: BMC genomics. - 1471-2164. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Birth weight (BW) is one of the most widely studied anthropometric traits in humans because of its role in various adult-onset diseases. The number of loci associated with BW has increased dramatically since the advent of whole-genome screening approaches such as genome-wide association studies (GWASes) and meta-analyses of GWASes (GWAMAs). To further contribute to elucidating the genetic architecture of BW, we analyzed a genotyped Norwegian dataset with information on child's BW (N=9,063) using a slightly modified version of a wavelet-based method by Shim and Stephens (2015) called WaveQTL.WaveQTL uses wavelet regression for regional testing and offers a more flexible functional modeling framework compared to conventional GWAS methods. To further improve WaveQTL, we added a novel feature termed "zooming strategy" to enhance the detection of associations in typically small regions. The modified WaveQTL replicated five out of the 133 loci previously identified by the largest GWAMA of BW to date by Warrington et al. (2019), even though our sample size was 26 times smaller than that study and 18 times smaller than the second largest GWAMA of BW by Horikoshi et al. (2016). In addition, the modified WaveQTL performed better in regions of high LD between SNPs.This study is the first adaptation of the original WaveQTL method to the analysis of genome-wide genotypic data. Our results highlight the utility of the modified WaveQTL as a complementary tool for identifying loci that might escape detection by conventional genome-wide screening methods due to power issues. An attractive application of the modified WaveQTL would be to select traits from various public GWAS repositories to investigate whether they might benefit from a second analysis.
  •  
2.
  • Denault, William R P, et al. (författare)
  • Wavelet Screening: a novel approach to analyzing GWAS data.
  • 2021
  • Ingår i: BMC bioinformatics. - 1471-2105. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditional methods for single-variant genome-wide association study (GWAS) incur a substantial multiple-testing burden because of the need to test for associations with a vast number of single-nucleotide polymorphisms (SNPs) simultaneously. Further, by ignoring more complex joint effects of nearby SNPs within a given region, these methods fail to consider the genomic context of an association with the outcome.To address these shortcomings, we present a more powerful method for GWAS, coined 'Wavelet Screening' (WS), that greatly reduces the number of tests to be performed. This is achieved through the use of a sliding-window approach based on wavelets to sequentially screen the entire genome for associations. Wavelets are oscillatory functions that are useful for analyzing the local frequency and time behavior of signals. The signals can then be divided into different scale components and analyzed separately. In the current setting, we consider a sequence of SNPs as a genetic signal, and for each screened region, we transform the genetic signal into the wavelet space. The null and alternative hypotheses are modeled using the posterior distribution of the wavelet coefficients. WS is enhanced by using additional information from the regression coefficients and by taking advantage of the pyramidal structure of wavelets. When faced with more complex genetic signals than single-SNP associations, we show via simulations that WS provides a substantial gain in power compared to both the traditional GWAS modeling and another popular regional association test called SNP-set (Sequence) Kernel Association Test (SKAT). To demonstrate feasibility, we applied WS to a large Norwegian cohort (N=8006) with genotypes and information available on gestational duration.WS is a powerful and versatile approach to analyzing whole-genome data and lends itself easily to investigating various omics data types. Given its broader focus on the genomic context of an association, WS may provide additional insight into trait etiology by revealing genes and loci that might have been missed by previous efforts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy