SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lecoeur Cécile) ;srt2:(2010-2014)"

Sökning: WFRF:(Lecoeur Cécile) > (2010-2014)

  • Resultat 11-15 av 15
  • Föregående 1[2]
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Barker, Adam, et al. (författare)
  • Association of genetic loci with glucose levels in childhood and adolescence a meta-analysis of over 6,000 children
  • 2011
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 60:6, s. 1805-1812
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-To investigate whether associations of common genetic variants recently identified for fasting glucose or insulin levels in nondiabetic adults are detectable in healthy children and adolescents. RESEARCH DESIGN AND METHODS-A total of 16 single nucleotide polymorphisms (SNPs) associated with fasting glucose were genotyped in six studies of children and adolescents of European origin, including over 6,000 boys and girls aged 9-16 years. We performed meta-analyses to test associations of individual SNPs and a weighted risk score of the 16 loci with fasting glucose. RESULTS-Nine loci were associated with glucose levels in healthy children and adolescents, with four of these associations reported in previous studies and five reported here for the first time (GLIS3, PROX1, SLC2A2, ADCY5, and CRY2). Effect sizes were similar to those in adults, suggesting age-independent effects of these fasting glucose loci. Children and adolescents carrying glucose-raising alleles of G6PC2, MTNR1B, GCK, and GLIS3 also showed reduced p-cell function, as indicated by homeostasis model assessment of beta-cell function. Analysis using a weighted risk score showed an increase [beta (95% CI)] in fasting glucose level of 0.026 mrnol/L (0.021-0.031) for each unit increase in the score. CONCLUSIONS-Novel fasting glucose loci identified in genome-wide association studies of adults are associated with altered fasting glucose levels in healthy children and adolescents with effect sizes comparable to adults. In nondiabetic adults, fasting glucose changes little over time, and our results suggest that age-independent effects of fasting glucose loci contribute to long-term interindividual differences in glucose levels from childhood onwards. Diabetes 60:1805-1812, 2011
  •  
12.
  • Froguel, Philippe, et al. (författare)
  • A genome-wide association study identifies rs2000999 as a strong genetic determinant of circulating haptoglobin levels
  • 2012
  • Ingår i: PLoS ONE. - 1932-6203. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Haptoglobin is an acute phase inflammatory marker. Its main function is to bind hemoglobin released from erythrocytes to aid its elimination, and thereby haptoglobin prevents the generation of reactive oxygen species in the blood. Haptoglobin levels have been repeatedly associated with a variety of inflammation-linked infectious and non-infectious diseases, including malaria, tuberculosis, human immunodeficiency virus, hepatitis C, diabetes, carotid atherosclerosis, and acute myocardial infarction. However, a comprehensive genetic assessment of the inter-individual variability of circulating haptoglobin levels has not been conducted so far. We used a genome-wide association study initially conducted in 631 French children followed by a replication in three additional European sample sets and we identified a common single nucleotide polymorphism (SNP), rs2000999 located in the Haptoglobin gene (HP) as a strong genetic predictor of circulating Haptoglobin levels (P overall = 8.1×10 -59), explaining 45.4% of its genetic variability (11.8% of Hp global variance). The functional relevance of rs2000999 was further demonstrated by its specific association with HP mRNA levels (β = 0.23±0.08, P = 0.007). Finally, SNP rs2000999 was associated with decreased total and low-density lipoprotein cholesterol in 8,789 European children (P total cholesterol = 0.002 and P LDL = 0.0008). Given the central position of haptoglobin in many inflammation-related metabolic pathways, the relevance of rs2000999 genotyping when evaluating haptoglobin concentration should be further investigated in order to improve its diagnostic/therapeutic and/or prevention impact. © 2012 Froguel et al.
  •  
13.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PLOS ONE. - San Francisco : Public Library of Science. - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
14.
  • Prokopenko, Inga, et al. (författare)
  • A Central Role for GRB10 in Regulation of Islet Function in Man.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science. - 1553-7404 .- 1553-7390. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
  •  
15.
  • Sverrisdóttir, Oddný Ósk, et al. (författare)
  • Direct Estimates of Natural Selection in Iberia Indicate Calcium Absorption Was Not the Only Driver of Lactase Persistence in Europe
  • 2014
  • Ingår i: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 31:4, s. 975-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Lactase persistence (LP) is a genetically determined trait whereby the enzyme lactase is expressed throughout adult life. Lactase is necessary for the digestion of lactose-the main carbohydrate in milk-and its production is downregulated after the weaning period in most humans and all other mammals studied. Several sources of evidence indicate that LP has evolved independently, in different parts of the world over the last 10,000 years, and has been subject to strong natural selection in dairying populations. In Europeans, LP is strongly associated with, and probably caused by, a single C to T mutation 13,910 bp upstream of the lactase (LCT) gene (-13,910*T). Despite a considerable body of research, the reasons why LP should provide such a strong selective advantage remain poorly understood. In this study, we examine one of the most widely cited hypotheses for selection on LP-that fresh milk consumption supplemented the poor vitamin D and calcium status of northern Europe's early farmers (the calcium assimilation hypothesis). We do this by testing for natural selection on -13,910*T using ancient DNA data from the skeletal remains of eight late Neolithic Iberian individuals, whom we would not expect to have poor vitamin D and calcium status because of relatively high incident UVB light levels. None of the eight samples successfully typed in the study had the derived T-allele. In addition, we reanalyze published data from French Neolithic remains to both test for population continuity and further examine the evolution of LP in the region. Using simulations that accommodate genetic drift, natural selection, uncertainty in calibrated radiocarbon dates, and sampling error, we find that natural selection is still required to explain the observed increase in allele frequency. We conclude that the calcium assimilation hypothesis is insufficient to explain the spread of LP in Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-15 av 15
  • Föregående 1[2]

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy