SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martelli M) srt2:(2015-2019)"

Sökning: WFRF:(Martelli M) > (2015-2019)

  • Resultat 1-10 av 16
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Moreau, V., et al. (författare)
  • Pool CFD modelling : lessons from the SESAME project
  • 2019
  • Ingår i: Nuclear Engineering and Design. - : ELSEVIER SCIENCE SA. - 0029-5493 .- 1872-759X. ; 355
  • Tidskriftsartikel (refereegranskat)abstract
    • The current paper describes the Computational Fluid-Dynamics (CFD) modelling of Heavy Liquid Metal (HLM) flows in a pool configuration and in particular how this is approached within the Horizon 2020 SESAME project. SESAME's work package structure, based on a systematic approach of redundancy and diversification, is explained along with its motivation. The main achievements obtained and the main lessons learned during the project are illustrated. The paper focuses on the strong coupling between the experimental activities and CFD simulations performed within the SESAME project. Two different HLM fluids are investigated: pure lead and Lead-Bismuth Eutectic. The objective is to make CFD a valid instrument used during the design of safe and innovative Gen-IV nuclear plants. Some effort has also been devoted to Proper Orthogonal Decomposition with Galerkin projection modelling (POD-Galerkin), a reduced order model suited for Uncertainty Quantification that operates by post-processing CFD results. Assessment of Uncertainty highly improves the reliability of CFD simulations. Dedicated experimental campaigns on heavily instrumented facilities have been conceived with the specific objective to build a series of datasets suited for the calibration and validation of the CFD modelling. In pool configuration, the attention is focused on the balance between conductive and convective heat transfer phenomena, on transient test-cases representative of incidental scenarios and on the possible occurrence of solidification phenomena. Four test sections have been selected to generate the datasets: (i) the CIRCE facility from ENEA, (ii) the TALL-3D pool test section from KTH, (iii) the TALL-3D Solidification Test Section (STS) from KTH and (iv) the SESAME Stand facility from CVR. While CIRCE and TALL-3D were existing facilities, the STS and SESAME Stand facility have been conceived, built and operated within the project, heavily relying on the use of CFD support. Care has been taken to ensure that almost all tasks were performed by at least two partners. Specific examples are given on how this strategy has allowed to uncover flaws and overcome pitfalls. Furthermore, an overview of the performed work and the achieved results is presented, as well as remaining or new uncovered issues. Finally, the paper is concluded with a description of one of the main goals of the SESAME project: the construction of the Gen-IV ALFRED CFD model and an investigation of its general circulation.
  •  
9.
  •  
10.
  • Wilder-Smith, Annelies, et al. (författare)
  • ZikaPLAN : addressing the knowledge gaps and working towards a research preparedness network in the Americas
  • 2019
  • Ingår i: Global Health Action. - : Taylor & Francis. - 1654-9716 .- 1654-9880. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Zika Preparedness Latin American Network (ZikaPLAN) is a research consortium funded by the European Commission to address the research gaps in combating Zika and to establish a sustainable network with research capacity building in the Americas. Here we present a report on ZikaPLAN`s mid-term achievements since its initiation in October 2016 to June 2019, illustrating the research objectives of the 15 work packages ranging from virology, diagnostics, entomology and vector control, modelling to clinical cohort studies in pregnant women and neonates, as well as studies on the neurological complications of Zika infections in adolescents and adults. For example, the Neuroviruses Emerging in the Americas Study (NEAS) has set up more than 10 clinical sites in Colombia. Through the Butantan Phase 3 dengue vaccine trial, we have access to samples of 17,000 subjects in 14 different geographic locations in Brazil. To address the lack of access to clinical samples for diagnostic evaluation, ZikaPLAN set up a network of quality sites with access to well-characterized clinical specimens and capacity for independent evaluations. The International Committee for Congenital Anomaly Surveillance Tools was formed with global representation from regional networks conducting birth defects surveillance. We have collated a comprehensive inventory of resources and tools for birth defects surveillance, and developed an App for low resource regions facilitating the coding and description of all major externally visible congenital anomalies including congenital Zika syndrome. Research Capacity Network (REDe) is a shared and open resource centre where researchers and health workers can access tools, resources and support, enabling better and more research in the region. Addressing the gap in research capacity in LMICs is pivotal in ensuring broad-based systems to be prepared for the next outbreak. Our shared and open research space through REDe will be used to maximize the transfer of research into practice by summarizing the research output and by hosting the tools, resources, guidance and recommendations generated by these studies. Leveraging on the research from this consortium, we are working towards a research preparedness network.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy