SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tamura Motohide) srt2:(2020-2022);srt2:(2022)"

Sökning: WFRF:(Tamura Motohide) > (2020-2022) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fukui, Akihiko, et al. (författare)
  • TOI-2285b: A 1.7 Earth-radius planet near the habitable zone around a nearby M dwarf
  • 2022
  • Ingår i: Publication of the Astronomical Society of Japan. - 0004-6264. ; 74:1, s. L1-L8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of TO1-2285b, a sub-Neptune-sized planet transiting a nearby (42 pc) M dwarf with a period of 27.3 d. We identified the transit signal from the Transiting Exoplanet Survey Satellite photometric data, which we confirmed with ground-based photometric observations using the multiband imagers MuSCAT2 and MuSCAT3. Combining these data with other follow-up observations including high-resolution spectroscopy with the Tillinghast Reflector Echelle Spectrograph, high-resolution imaging with the SPeckle Polarimeter, and radial velocity (RV) measurements with the InfraRed Doppler instrument, we find that the planet has a radius of 1.74 +/- 0.08 R-circle plus, a mass of <19.5 M-circle plus + (95% c.I.), and an insolation flux of 1.54 +/- 0.14 times that of the Earth. Although the planet resides just outside the habitable zone for a rocky planet, if the planet harbors an H2O layer under a hydrogen-rich atmosphere, then liquid water could exist on the surface of the H2O layer depending on the planetary mass and water mass fraction. The bright host star in the near-infrared (K-s = 9.0) makes this planet an excellent target for further RV and atmospheric observations to improve our understanding of the composition, formation, and habitability of sub-Neptune-sized planets.
  •  
2.
  • Harakawa, Hiroki, et al. (författare)
  • A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508
  • 2022
  • Ingår i: Publications of the Astronomical Society of Japan. - 0004-6264 .- 2053-051X. ; 74:4, s. 904-922
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of 3.92ms−1⁠, corresponding to a planet with a minimum mass msini=4.00M⊕⁠. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of 0.05366au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
  •  
3.
  • Hinkley, Sasha, et al. (författare)
  • The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 134:1039
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
  •  
4.
  • Kuzuhara, Masayuki, et al. (författare)
  • Direct-imaging Discovery and Dynamical Mass of a Substellar Companion Orbiting an Accelerating Hyades Sun-like Star with SCExAO/CHARIS
  • 2022
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 934:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the direct-imaging discovery of a substellar companion in orbit around a Sun-like star member of the Hyades open cluster. So far, no other substellar companions have been unambiguously confirmed via direct imaging around main-sequence stars in Hyades. The star HIP 21152 is an accelerating star as identified by the astrometry from the Gaia and Hipparcos satellites. We detected the companion, HIP 21152 B, in multiple epochs using the high-contrast imaging from SCExAO/CHARIS and Keck/NIRC2. We also obtained the stellar radialvelocity data from the Okayama 188 cm telescope. The CHARIS spectroscopy reveals that HIP 21152 B’s spectrum is consistent with the L/T transition, best fit by an early T dwarf. Our orbit modeling determines the semimajor axis and the dynamical mass of HIP 21152 B to be 17.5-+3.87.2 au and 27.8-+5.48.4 MJup, respectively. The mass ratio of HIP 21152 B relative to its host is ≈2%, near the planet/brown dwarf boundary suggested by recent surveys. Mass estimates inferred from luminosity-evolution models are slightly higher (33–42 MJup). With a dynamical mass and a well-constrained age due to the system’s Hyades membership, HIP 21152 B will become a critical benchmark in understanding the formation, evolution, and atmosphere of a substellar object as a function of mass and age. Our discovery is yet another key proof of concept for using precision astrometry to select directimaging targets.
  •  
5.
  • Kwon, Woojin, et al. (författare)
  • B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main
  • 2022
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 926:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 850 mu m polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope as part of the B-fields In STar-forming Region Observations survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less-dense filamentary structures where NH2 < 0.93 x 10(22) cm(-2) (magnetic fields perpendicular to density gradients), while they are perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at NH2 approximate to 4.6 x 10(22) NH2 approximate to 16 x 10(22) cm(-2), magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments (B-POS = 60-300 mu G)) using the Davis-Chandrasekhar-Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy