SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alarcon Riquelme ME) srt2:(2020-2021)"

Sökning: WFRF:(Alarcon Riquelme ME) > (2020-2021)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Botia-Sanchez, M, et al. (författare)
  • B Cells and Microbiota in Autoimmunity
  • 2021
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Trillions of microorganisms inhabit the mucosal membranes maintaining a symbiotic relationship with the host’s immune system. B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensals to preserve a healthy microbial ecosystem. Mounting evidence shows that changes in the function and composition of the gut microbiota are associated with several autoimmune diseases suggesting that an imbalanced or dysbiotic microbiota contributes to autoimmune inflammation. Bacteria within the gut mucosa may modulate autoimmune inflammation through different mechanisms from commensals ability to induce B-cell clones that cross-react with host antigens or through regulation of B-cell subsets’ capacity to produce cytokines. Commensal signals in the gut instigate the differentiation of IL-10 producing B cells and IL-10 producing IgA+ plasma cells that recirculate and exert regulatory functions. While the origin of the dysbiosis in autoimmunity is unclear, compelling evidence shows that specific species have a remarkable influence in shaping the inflammatory immune response. Further insight is necessary to dissect the complex interaction between microorganisms, genes, and the immune system. In this review, we will discuss the bidirectional interaction between commensals and B-cell responses in the context of autoimmune inflammation.
  •  
5.
  •  
6.
  •  
7.
  • Hernandez, GG, et al. (författare)
  • The Role of BANK1 in B Cell Signaling and Disease
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The B cell scaffold protein with ankyrin repeats (BANK1) is expressed primarily in B cells and with multiple but discrete roles in B cell signaling, including B cell receptor signaling, CD40-related signaling, and Toll-like receptor (TLR) signaling. The gene for BANK1, located in chromosome 4, has been found to contain genetic variants that are associated with several autoimmune diseases and also other complex phenotypes, in particular, with systemic lupus erythematosus. Common genetic variants are associated with changes in BANK1 expression in B cells, while rare variants modify their capacity to bind efferent effectors during signaling. A BANK1-deficient model has shown the importance of BANK1 during TLR7 and TLR9 signaling and has confirmed its role in the disease. Still, much needs to be done to fully understand the function of BANK1, but the main conclusion is that it may be the link between different signaling functions within the B cells and they may act to synergize the various pathways within a cell. With this review, we hope to enhance the interest in this molecule.
  •  
8.
  • Lopez-Dominguez, R, et al. (författare)
  • Transcription Factor Activity Inference in Systemic Lupus Erythematosus
  • 2021
  • Ingår i: Life (Basel, Switzerland). - : MDPI AG. - 2075-1729. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with diverse clinical manifestations. Although most of the SLE-associated loci are located in regulatory regions, there is a lack of global information about transcription factor (TFs) activities, the mode of regulation of the TFs, or the cell or sample-specific regulatory circuits. The aim of this work is to decipher TFs implicated in SLE. Methods: In order to decipher regulatory mechanisms in SLE, we have inferred TF activities from transcriptomic data for almost all human TFs, defined clusters of SLE patients based on the estimated TF activities and analyzed the differential activity patterns among SLE and healthy samples in two different cohorts. The Transcription Factor activity matrix was used to stratify SLE patients and define sets of TFs with statistically significant differential activity among the disease and control samples. Results: TF activities were able to identify two main subgroups of patients characterized by distinct neutrophil-to-lymphocyte ratio (NLR), with consistent patterns in two independent datasets—one from pediatric patients and other from adults. Furthermore, after contrasting all subgroups of patients and controls, we obtained a significant and robust list of 14 TFs implicated in the dysregulation of SLE by different mechanisms and pathways. Among them, well-known regulators of SLE, such as STAT or IRF, were found, but others suggest new pathways that might have important roles in SLE. Conclusions: These results provide a foundation to comprehend the regulatory mechanism underlying SLE and the established regulatory factors behind SLE heterogeneity that could be potential therapeutic targets.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy