SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amunts Alexey) "

Sökning: WFRF:(Amunts Alexey)

  • Resultat 21-30 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
21.
  • Mühleip, Alexander, et al. (författare)
  • Structure of a mitochondrial ATP synthase with bound native cardiolipin
  • 2019
  • Ingår i: eLIFE. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 angstrom resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids.
  •  
22.
  • Naschberger, Andreas, et al. (författare)
  • Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex
  • 2022
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-0278. ; 8:10, s. 1191-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosystem I (PSI) enables photo-electron transfer and regulates photosynthesis in the bioenergetic membranes of cyanobacteria and chloroplasts. Being a multi-subunit complex, its macromolecular organization affects the dynamics of photosynthetic membranes. Here we reveal a chloroplast PSI from the green alga Chlamydomonas reinhardtii that is organized as a homodimer, comprising 40 protein subunits with 118 transmembrane helices that provide scaffold for 568 pigments. Cryogenic electron microscopy identified that the absence of PsaH and Lhca2 gives rise to a head-to-head relative orientation of the PSI–light-harvesting complex I monomers in a way that is essentially different from the oligomer formation in cyanobacteria. The light-harvesting protein Lhca9 is the key element for mediating this dimerization. The interface between the monomers is lacking PsaH and thus partially overlaps with the surface area that would bind one of the light-harvesting complex II complexes in state transitions. We also define the most accurate available PSI–light-harvesting complex I model at 2.3 Å resolution, including a flexibly bound electron donor plastocyanin, and assign correct identities and orientations to all the pigments, as well as 621 water molecules that affect energy transfer pathways.
  •  
23.
  • Naschberger, Andreas, et al. (författare)
  • Structure of plant photosystem I in a native assembly state defines PsaF as a regulatory checkpoint
  • 2024
  • Ingår i: Nature plants. - 2055-026X. ; 10, s. 874-879
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function. This study reports the structure of a photosystem I assembly intermediate isolated from greening oat seedlings. It defines PsaF as a regulatory checkpoint promoting the association of LHCI that couples biogenesis to function.
  •  
24.
  • Nirwan, Neha, et al. (författare)
  • Structure-based mechanism for activation of the AAA plus GTPase McrB by the endonuclease McrC
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The AAA+ GTPase McrB powers DNA cleavage by the endonuclease McrC. The GTPase itself is activated by McrC. The architecture of the GTPase and nuclease complex, and the mechanism of their activation remained unknown. Here, we report a 3.6 angstrom structure of a GTPase-active and DNA-binding deficient construct of McrBC. Two hexameric rings of McrB are bridged by McrC dimer. McrC interacts asymmetrically with McrB protomers and inserts a stalk into the pore of the ring, reminiscent of the gamma subunit complexed to alpha(3)beta(3) of F-1-ATPase. Activation of the GTPase involves conformational changes of residues essential for hydrolysis. Three consecutive nucleotide-binding pockets are occupied by the GTP analogue 5'-guanylyl imidodiphosphate and the next three by GDP, which is suggestive of sequential GTP hydrolysis.
  •  
25.
  • Ott, Martin, et al. (författare)
  • Organization and Regulation of Mitochondrial Protein Synthesis
  • 2016
  • Ingår i: Annual Review of Biochemistry. - : Annual Reviews. - 0066-4154 .- 1545-4509. ; 85, s. 77-101
  • Forskningsöversikt (refereegranskat)abstract
    • Mitochondria are essential organelles of endosymbiotic origin that are responsible for oxidative phosphorylation within eukaryotic cells. Independent evolution between species has generated mitochondrial genomes that are extremely diverse, with the composition of the vestigial genome determining their translational requirements. Typically, translation within mitochondria is restricted to a few key subunits of the oxidative phosphorylation complexes that are synthesized by dedicated ribosomes (mitoribosomes). The dramatically rearranged mitochondrial genomes, the limited set of transcripts, and the need for the synthesized proteins to coassemble with nuclear-encoded subunits have had substantial consequences for the translation machinery. Recent high-resolution cryo-electron microscopy has revealed the effect of coevolution on the mitoribosome with the mitochondrial genome. In this review, we place the new structural information in the context of the molecular mechanisms of mitochondrial translation and focus on the novel ways protein synthesis is organized and regulated in mitochondria.
  •  
26.
  • Perez Boerema, Annemarie, 1991- (författare)
  • Cryo-EM Studies of Macromolecular Complexes from Photosynthetic Organisms
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Plants, algae, and cyanobacteria convert light energy into chemical energy through the process of photosynthesis, fueling the planet and making life as we know it possible. Photosystem I (PSI) is one of the main photosynthetic complexes, responsible for this process. PSI uses the energy of light to transfer electrons from the soluble electron carrier plastocyanin, on the lumenal site of the thylakoid membrane, to ferrodoxin, on the stromal site of the membrane. Thus, playing a key role in the light dependent reactions. In order to survive many photosynthetic organisms need to be able to adapt to fluctuations in light and have adapted their photosynthetic machinery accordingly. In recent years many advances have been made in electron cryo-microscopy, making it possible to visualize many previously elusive photosynthetic complexes. This has brought a wealth of information on the structural adaptations of PSI.In plants and algae, PSI is hosted by the chloroplast, a specialized organelle that houses the photosynthetic reactions. In the chloroplast, key components of PSI are synthesized by the chloroplasts own translation machinery: the chloroplast ribosome. Translation in the chloroplast is remarkable as it has to synchronize translation in two different genetic compartments as well as adapt to fluctuations in light. A glimpse of how this machinery has evolved to be able to fulfill all of these duties can be obtained from its three dimensional structure and its chloroplast specific features. However, despite all this structural information providing valuable clues as to the functioning of these systems, there are still many aspects of how they play a role that still remain unknown.
  •  
27.
  • Perez-Boerema, Annemarie, et al. (författare)
  • Structure of a minimal photosystem I from the green alga Dunaliella salina
  • 2020
  • Ingår i: Nature plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 6:3, s. 321-327
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar energy harnessed by oxygenic photosynthesis supports most of the life forms on Earth. In eukaryotes, photosynthesis occurs in chloroplasts and is achieved by membrane-embedded macromolecular complexes that contain core and peripheral antennae with multiple pigments. The structure of photosystem I (PSI) comprises the core and light-harvesting (LHCI) complexes, which together form PSI-LHCI. Here we determined the structure of PSI-LHCI from the salt-tolerant green alga Dunaliella salina using X-ray crystallography and electron cryo-microscopy. Our results reveal a previously undescribed configuration of the PSI core. It is composed of only 7 subunits, compared with 14-16 subunits in plants and the alga Chlamydomonas reinhardtii, and forms the smallest known PSI. The LHCI is poorly conserved at the sequence level and binds to pigments that form new energy pathways, and the interactions between the individual Lhca1-4 proteins are weakened. Overall, the data indicate the PSI of D. salina represents a different type of the molecular organization that provides important information for reconstructing the plasticity and evolution of PSI. The photosystem I light-harvesting complex from the salt-tolerant green alga Dunaliella salina has a core configuration composed of only seven subunits. This unusual molecular organization could inform the reconstruction of photosystem evolution.
  •  
28.
  • Perez Boerema, Annemarie, et al. (författare)
  • Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor
  • 2018
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 4, s. 212-217
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygenic photosynthesis produces oxygen and builds a variety of organic compounds, changing the chemistry of the air, the sea and fuelling the food chain on our planet. The photochemical reactions underpinning this process in plants take place in the chloroplast. Chloroplasts evolved ~1.2 billion years ago from an engulfed primordial diazotrophic cyanobacterium, and chlororibosomes are responsible for synthesis of the core proteins driving photochemical reactions. Chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential co-factors, implying the presence of chloroplast-specific regulatory mechanisms and structural adaptation of the chlororibosome1,2. Despite recent structural information3,4,5,6, some of these aspects remained elusive. To provide new insights into the structural specialities and evolution, we report a comprehensive analysis of the 2.9–3.1 Å resolution electron cryo-microscopy structure of the spinach chlororibosome in complex with its recycling factor and hibernation-promoting factor. The model reveals a prominent channel extending from the exit tunnel to the chlororibosome exterior, structural re-arrangements that lead to increased surface area for translocon binding, and experimental evidence for parallel and convergent evolution of chloro- and mitoribosomes.
  •  
29.
  • Petrov, Anton S., et al. (författare)
  • Structural Patching Fosters Divergence of Mitochondrial Ribosomes
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:2, s. 207-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial ribosomes (mitoribosomes) are essential components of all mitochondria that synthesize proteins encoded by the mitochondrial genome. Unlike other ribosomes, mitoribosomes are highly variable across species. The basis for this diversity is not known. Here, we examine the composition and evolutionary history of mitoribosomes across the phylogenetic tree by combining three-dimensional structural information with a comparative analysis of the secondary structures of mitochondrial rRNAs (mt-rRNAs) and available proteomic data. We generate a map of the acquisition of structural variation and reconstruct the fundamental stages that shaped the evolution of the mitoribosomal large subunit and led to this diversity. Our analysis suggests a critical role for ablation and expansion of rapidly evolving mt-rRNA. These changes cause structural instabilities that are patched by the acquisition of pre-existing compensatory elements, thus providing opportunities for rapid evolution. This mechanism underlies the incorporation of mt-tRNA into the central protuberance of the mammalian mitoribosome, and the altered path of the polypeptide exit tunnel of the yeast mitoribosome. We propose that since the toolkits of elements utilized for structural patching differ between mitochondria of different species, it fosters the growing divergence of mitoribosomes.
  •  
30.
  • Sighel, Denise, et al. (författare)
  • Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth
  • 2021
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 35:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 21-30 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy