SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Sundén Erik) srt2:(2020-2022)"

Sökning: WFRF:(Andersson Sundén Erik) > (2020-2022)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Peter, 1981-, et al. (författare)
  • Coincidence spectroscopy for increased sensitivity in radionuclide monitoring
  • 2022
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The majority of the energy in a nuclear explosion is released in the immediate blast and the initial radiation accounts. The remaining fraction is released through radioactive decay of the explosion's fission products and neutron activation products over a longer time span. This allows for the detection of a nuclear explosion by detecting the presence of residual decay. Radionuclide monitoring stations for detection of radioactive emissions to the atmosphere is thereby an important tool in the verification of compliance with nuclear disarmament treaties. In particular, the globally spanning radionuclide station network of the International Monitoring System (IMS) has been implemented for verification of the Comprehensive Nuclear-Test-Ban Treaty.High Purity Germanium (HPGe) detectors are workhorses in radionuclide monitoring. The detection of characteristic gamma rays can be used to disclose the presence of signature nuclides produced innuclear weapon tests. A particular development that has potential to improve the sensitivity of radionuclide monitoring is the coincidence technique where decaying nuclides that emit several coincident gamma rays can be detected at much smaller activity concentrations than with conventional gamma spectroscopy.In this project, dedicated gamma-gamma coincidence detectors are being developed, utilizing electronically segmented HPGe detectors. These detectors are expected to be highly sensitive to low-activity samples of nuclides that present coincident emissions of gamma rays. In this paper we present the concept, define performance parameters, and explore the performance of such detectors to a subset of radionuclides of particular CTBT relevance. In addition, we discuss the path forward in developing a next generation gamma-gamma coincidence spectroscopy system of segmented HPGe.
  •  
2.
  • Andersson, Peter, 1981-, et al. (författare)
  • Simulation of the response of a segmented High-Purity Germanium detector for gamma emission tomography of nuclear fuel
  • 2020
  • Ingår i: SN Applied Sciences. - : Springer. - 2523-3963 .- 2523-3971. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Irradiation testing of nuclear fuel is routinely performed in nuclear test reactors. For qualification and licensing of Accident Tolerant Fuels or Generation IV reactor fuels, an extensive increase in irradiation testing is foreseen in order to fill the gaps of existing validation data, both in normal operational conditions and in order to identify operational limits.Gamma Emission Tomography (GET) has been demonstrated as a viable technique for studies of the behavior of irradiated nuclear fuel, e.g. measurement of fission gas release and inspection of fuel behavior under Loss-Of-Coolant Accident conditions. In this work, the aim is to improve the technique of GET for irradiated nuclear fuel by developing a detector concept for an improved tomography system that allows for a higher spatial resolution and/or faster interrogation.We present the working principles of a novel concept for gamma emission tomography using a segmented High Purity Germanium (HPGe) detector. The performance of this concept was investigated using the Monte Carlo particle transport code MCNP. In particular, the data analysis of the proposed detector was evaluated, and the performance, in terms of full energy efficiency and localization failure rate, has been evaluated.We concluded that the segmented HPGe detector has an advantageous performance as compared to the traditional single-channel detector systems. Due to the scattering nature of gamma rays, a trade-off is presented between efficiency and cross-talk; however, the performance is nevertheless a substantial improvement over the currently used single-channel HPGe detector systems.
  •  
3.
  • Atak, Haluk, et al. (författare)
  • The degradation of gamma-ray mass attenuation of UOX and MOX fuel with nuclear burnup
  • 2020
  • Ingår i: Progress in nuclear energy (New series). - : Elsevier BV. - 0149-1970 .- 1878-4224. ; 125
  • Tidskriftsartikel (refereegranskat)abstract
    • Nondestructive gamma-ray spectrometry of nuclear fuel is routinely performed in axial gamma scanning devices and more recently with gamma emission tomography. Following the irradiation of a fresh nuclear fuel with high intensity neutron flux in a nuclear reactor core, a great number of gamma-emitting radionuclides are created. These can be utilized for gamma spectrometric techniques. However, due to the high density and atomic number of the nuclear fuel, self-attenuation of gamma-rays is a challenge, which requires attenuation correction in order to perform accurate analysis of the source activity in the fuel.In this study, the degradation of the gamma-ray mass attenuation with burnup was investigated and, in addition, a predictive model was created by investigating the attenuation change at various gamma energies caused by the burnup of the nuclear fuel. This model is intended for use by spectrometry practitioners inspecting nuclear fuel. To this aim, the energy-dependent gamma-ray mass-attenuation coefficients were investigated as a function of burnup for UOX, and three MOX fuels having different initial Pu contents. The Serpent 2 reactor physics code was used to simulate the burnup history of the fuel pins. The nuclide inventory of the Serpent 2 output is combined with the NIST XCOM database to calculate the mass attenuation coefficients.The mass attenuation coefficient of the fuel was found to decrease with the fuel burnup, in the range of a few percent, depending on the burnup and gamma energy. Also, a theoretical burnup dependent swelling model was imposed on fuel density to see how linear attenuation coefficient of fuel material is changed. Furthermore, greater effect may be expected on the transmitted intensity, where a simulation study of a PWR assembly revealed that the contribution from the inner rods in a scanned fuel assembly increased by tens of percent compared to the one with non-irradiated fresh fuels, when shielded by the outer rods of the assembly. A sensitivity analysis was performed in order to test the effect of a number of geometrical and operational reactor parameters that were considered to potentially effect the mass attenuation coefficient. Finally, a simple-to-use predictive model was constructed providing the mass-attenuation coefficient [cm2/g] of fuel as a function of burnup [MWd/kgHM] and initial Pu content [wt%]. The resulting predictive model was optimized by using the nonlinear regression method.
  •  
4.
  • Lantz, Mattias, 1971-, et al. (författare)
  • Gamma spectroscopy methodology for large amounts of environmental samples in Sweden 30 years after the Chernobyl accident
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • In a Swedish citizen science project, more than 200 elementary school classes participated in collecting fungi, soil samples, and droppings from deer and wild boar, from all over Sweden. The samples have been sent to a laboratory at Uppsala University where they are being analyzed through gamma spectroscopy with a shielded HPGe detector. The main objective is to scan the samples for 137Cs from the Chernobyl accident and compare the data with measurements from 1986, but uptake of naturally occuring radionuclides like 40K and radon daughters will also be determined. Together with the soil samples, transfer factors will be derived, and correlations for these factors will be sought for different species of fungi and soil types. The potential for correlating the results with different biological processes will also be investigated, in part through the collected animal droppings. This is a work in progress where the present status of the experimental setup and methodology are presented. Issues with the initial approach for corrections are discussed and preliminary results are presented.
  •  
5.
  • Rathore, Vikram, et al. (författare)
  • Calculation of Spatial Response of a Collimated Segmented HPGe detector for Gamma Emission Tomography by MCNP Simulations
  • 2022
  • Ingår i: IEEE Transactions on Nuclear Science. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9499 .- 1558-1578. ; 69:4, s. 714-721
  • Tidskriftsartikel (refereegranskat)abstract
    • We have proposed a planar electronically segmented HPGe detector concept in combination with a multi-slit collimator for gamma emission tomography. In this work, the spatial resolution achievable by using the collimated segmented HPGe detector was evaluated, prior to the manufacture and operation of the detector. The spatial response of a collimated segmented HPGe detector concept was evaluated using simulations performed with Monte Carlo N-Particle transport code MCNP6. The full detector and multi-slit collimator system were modeled and for the quantification of the spatial response, the Modulation Transfer Function (MTF) was chosen as a performance metric. The MTF curve was obtained through the calculation of the Line Spread Function (LSF) by analyzing simulated projection data. In addition, tomographic reconstructions of the simulated simplified test objects were made to demonstrate the performance of the segmented HPGe detector in the planned application. For 662 keV photons, the spatial resolution obtained was approximately the same as the collimator slit width for both 100 and 150 mm long collimators. The corresponding spatial resolution at 1596 keV photon energy was almost twice the slit width for 100 mm collimator, due to the partial penetration of the high-energy gamma rays through the collimator bulk. For a 150 mm long collimator, an improved resolution was obtained.
  •  
6.
  • Rathore, Vikram, et al. (författare)
  • Geometrical optimisation of a segmented HPGe detector for spectroscopic gamma emission tomography : A simulation study
  • 2021
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 998
  • Tidskriftsartikel (refereegranskat)abstract
    • Segmented coaxial HPGe (High Purity Germanium) detectors have recently been shown to be feasible for Gamma Emission Tomography (GET). This type of detector allows for a combination of high efficiency and high energy resolution in gamma spectrometry of irradiated nuclear fuel. The ultimate aim of developing segmented HPGe for GET measurements is to achieve a high spatial resolution to facilitate imaging of rod-internal features and interrogation of smaller irradiated fuel samples.In this work, we present the optimisation of a segmented HPGe detector through a simulation study using the Monte Carlo particle transport code MCNP. Constraints to each dimension of the detector were identified, from manufacturing limitations and requirements arising from the use of a finite-sized collimator slit. In particular, a relationship between the minimum inner radius of the coaxial detector and the segments azimuthal dimension was derived based on the identified constraints. Segment azimuthal and radial dimensions have been varied (based on the derived relationship between the azimuthal and radial dimension) and the full energy efficiency and misidentification rate were evaluated to obtain the optimal dimensions. The optimal ranges of the segment dimensions were determined.
  •  
7.
  • Senis, Lorenzo, et al. (författare)
  • A computational methodology for estimating the detected energy spectra of the gamma-ray flux from irradiated nuclear fuel
  • 2022
  • Ingår i: IEEE Transactions on Nuclear Science. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9499 .- 1558-1578. ; 69:4, s. 703-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray spectrometry using collimated detectors is a well-established examination method for irradiated nuclear fuel. However, the feasibility of examining a particular nuclide of interest is subject to constraints; the peak must be statistically determinable with the desired precision and the total spectrum count rate in the detector should not cause throughput issues. Methods were assembled for gamma spectrum prediction to optimize instruments for gamma emission tomography and to enable a priori feasibility evaluation of determination of single peaks of irradiated nuclear fuel. The aim was to find reliable results (~10% accuracy) regarding total spectrum and peak count rates with faster computation time than a full-Monte Carlo approach. For this purpose, the method is based on depletion calculations with SERPENT2, a point-source kernel method for the collimator response, a rig response matrix and a detector response matrix, both computed with MCNP6. The computational methodology uses as input the fuel properties (dimensions, materials, power history, and cooling time), and the instrumental setup (collimator and detector dimensions and materials). The prediction method was validated using measured data from a high-burnup, short-cooled test fuel rodlet from the Halden reactor. Absolute count rates and ratios of characteristic peaks were compared between predicted and measured spectra, showing a total count rate overestimation of 7% and discrepancies between 2-20% for the single peaks (same order of magnitude of the uncertainty). This level of agreement is deemed sufficient for measurement campaigns planning, and the optimization of spectroscopic instruments for use in gamma scanning and tomography of nuclear fuel.
  •  
8.
  • Senis, Lorenzo, et al. (författare)
  • Evaluation of gamma-ray transmission through rectangular collimator slits for application in nuclear fuel spectrometry
  • 2021
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 1014
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray spectrometry is widely applied in several science fields, and in particular in non-destructive gamma scanning and gamma emission tomography of irradiated nuclear fuel. Often, a collimator is used in the experimental setup, to selectively interrogate a region of interest in the fuel. For the optimization of instrument design, as well as for planning measurement campaigns, predictive models for the transmitted gamma-ray intensity through the collimator are needed. Commonly, Monte Carlo Radiation Transport tools are used for accurate prediction of gamma-ray transport, however, the long computation time requirements when used in low-efficiency experimental setups present challenges.In this work, the full-energy peak intensity transmitted through a rectangular collimator slit was examined. A uniform planar surface source emitting isotropically was considered, and the rate of photons reaching an ideal counter plane on the opposite side of the collimator was evaluated by analytical integration. To find a closed-form primitive function, some idealizations were required, and thereby parametric models were obtained for the optical field of view, dependent on slit dimensions (length, height and width) and source-to-collimator distance. It was shown that the count rate in the detector is independent of the collimator-to-source distance. For contributions from outside the optical field of view, where a closed-form expression cannot be found, instead fast numerical integration methods were proposed.The results were validated using the Monte Carlo code MCNP6. For the analytical method, deviations were larger, the shorter the collimator, with up to 25% of underestimation obtained for the shortest examined collimator of 10 cm length. However, the longer the collimator, the better the observed agreement. This accuracy is deemed to be sufficient for instrument design and measurement planning, where often the order of magnitude of the count rate is not a priori known. For the numerical method, the results showed an agreement within 3 % for all evaluated collimator settings. The methods are planned for use in iterative optimization routines in the design of Gamma Emission Tomography devices, as well as for the prediction of gamma spectra obtained in the planning of fuel inspections. An application of the proposed method was demonstrated in spectrum prediction for a short cooling-time fuel rod test from the Halden reactor.
  •  
9.
  • Gustavsson, Cecilia, Dr, 1973-, et al. (författare)
  • Citizen science in radiation research
  • 2020
  • Ingår i: ND 2019. - : EDP Sciences. - 9782759891061
  • Konferensbidrag (refereegranskat)abstract
    • A growing trend in science is that research institutions reach out to members of the public for participating in research. The reasons for outreach are many, spanning from the desire to collect and/or analyse large sets of data efficiently, to the idea of including the general public on a very fundamental level in science-making and ultimately decision-making. The presented project is curriculum-based and carried out in 240 lower secondary school classes (pupils of age 13-16). The task, as designed by the participating universities, is to collect mushrooms, soil and animal droppings from different parts of Sweden, do preliminary sample preparation and analyses and send the samples to the university institutions for radioactivity measurement. Behind the project is a desire to compare today’s levels of 137Cs with those deposited right after the Chernobyl accident in 1986, but also to study the exchange of caesium between organisms as well as the impacts of biological and geological processes on uptake and retention. The scientific outcome is a geodatabase with the 137Cs activity (Bq/m2) present in the Swedish environment, where radioactivity data can be linked to the species (fungi, competing species, animals foraging), forest type, land type, land use and other environmental factors. The science question is of interest to the general public as foraging for mushrooms, as well as spending recreational time in forests is widely popular in Sweden. In this article, we will discuss the current status of the project and the observations we have made about how well the public can participate in scientific research. Focus will be on organization of the project, such as logistics, preparation of supportive material, feedback and communication between researchers and schools. We will present observations about the impact the project has had on the participants, based on quantitative and qualitative evaluations.
  •  
10.
  • Marcinkevicius, Benjaminas, et al. (författare)
  • Fuel ion ratio determination using the 14 MeV Tandem neutron spectrometer for JET DTE1 campaign discharges
  • 2022
  • Ingår i: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 184
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the determination of the fuel ion ratio nT/ntot in fusion experiments using two different approaches. The methods are applied to plasma discharges from the deuterium-tritium campaign at the Joint European Torus (JET) in 1997. Multiple discharges have been analysed using data acquired with the Tandem (KM2) neutron spectrometer, using a new neutron spectrometer response function and improved line-of-sight information.The two different approaches were generally similar with the exception of the beam slowing down modelling, handled by two different particle transport codes, namely, TRANSP and PENCIL.The results show that nT/ntot can be determined using Tandem neutron spectrometer data; nT/ntot using both of the approaches are consistent and within the uncertainty for a range of studied discharges.The obtained results support previous studies on nT/ntot determination using neutron spectroscopy. In addition, we have shown that PENCIL can be used instead of TRANSP for a range of discharges which could simplify and speed up the estimation of nT/ntot. The possible limitations of the approach using PENCIL could be investigated using different neutron spectrometer data from the 2021 JET deuterium-tritium campaign.A similar spectrometer like Tandem is planned to be operational at ITER and the results of this paper form the first experimental verification of the capability for nT/ntot measurements with such spectrometers. Further research on this could lead to better understanding of these instruments and their limitations before the start of experiments at ITER.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy