SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andrae Anders 1973) srt2:(2004)"

Sökning: WFRF:(Andrae Anders 1973) > (2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andrae, Anders, 1973, et al. (författare)
  • Uncertainty estimation by Monte Carlo Simulation applied to Life Cycle Inventory of Cordless Phones and Microscale Metallization Processes
  • 2004
  • Ingår i: IEEE Transactions on Electronics Packaging Manufacturing. ; 27:4, s. 233-245
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on uncertainty analysis, that is, how the input data uncertainty affects the output data uncertainty in small but realistic product systems is modeled. The motivation for the study is to apply the Monte Carlo simulation for uncertainty estimation in life cycle inventory and environmental assessment of microelectronics applications. This paper addresses the question whether there is an environmental advantage of using DECT phones instead of GSM phones in offices. The paper also addresses the environmental compatibility of Electrochemical Pattern Replication (ECPR) compared to classical photolithography based microscale metallization (CL) for pattern transfer. Both environmental assessments in this paper consider electricity consumption and CO2 emissions. The projects undertaken are two comparative studies of DECT phone/GSM phone and ECPR/CL respectively. The research method used was probabilistic uncertainty modelling with a limited number of inventory parameters used in the MATLAB tool. For the DECT/GSM study the results reflects the longer DECT technical life which is an environmental advantage. For the Electrochemical Pattern Replication (ECPR)/classical photolithography based microscale metallization (CL) study the results reflects the fewer number of process steps and the lower electricity consumption needed by the ECPR to reach the functional unit. The difference in results is large enough to be able to draw conclusions, as the processes with the highest electricity consumption within the system boundaries have been determined. Based on earlier work a straightforward method to include uncertainty for input life cycle inventory data is used to quantify the influence of realistic errors for input data in two microelectronic applications. The conclusion is that the ECPR technology is more electricity efficient than CL in producing one layer of copper on a silicon wafer having a diameter of 20.32 cm. The conclusion is that the longer technical life of a cordless DECT phone is reflected in an electricity/CO2 comparison with a GSM phone, if use in an office is considered. Reasonable uncertainty intervals used for the input life cycle inventory data for the studied DECT/GSM and ECPR/CL system does affect the outcome of calculation of emission of CO2 but not to the degree that conclusions are not valid.Different uncertainty intervals and probability distributions could apply for different types of data and the interrelated input data dependence should be investigated. Today there exist very few life cycle inventory (LCI) data with the range of uncertainty for input and output elements. It must be emphasized that the upcoming LCI databases should have standard deviation characterized LCI data just as the Swiss ecoinvent LCI database.More inventory parameters and probability distributions characteristic for microsystems could be included and error analysis should be applied to future life inventory methodology, especially for future packaging concepts such as System-In-a-Package and System-On-a-Chip comparisons.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Andrae, Anders, 1973, et al. (författare)
  • The shift to lead-free solders - assessed through attributional and consequential life cycle inventory
  • 2004
  • Ingår i: InLCA/LCM Internet conference.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Electronics packaging is a research field that deals with everything in electronics, from the chip to the complete system, including the solder interconnection materials. As of July 1st of 2006, lead will not be allowed in solder pastes. This has called for evaluations of alternatives to tin-lead solders, and especially the environmental consequences of the shift from tin-lead solder paste (TL) to lead-free solder paste (LF). In 2003 a life cycle assessment (LCA) was initiated, having two aims: (i) to compare an TL (62% tin, 36% lead, 2% silver) to an LF (95.5% tin, 3.8% silver, 0.7% copper); both pastes assumed to include 10% flux, and (ii) to compare attributional and consequential LCA methodologies. The attributional LCA describes the environmental burdens of the solder life cycle. It describes, for example, the obvious fact that the shift from TL to LF means that lead is essentially eliminated from the solder life cycle. Our attributional LCA is largely based on literature data. Lacking environmental data for flux production, we used the economic input-output model from Carnegie Mellon to obtain approximate values . Preliminary results from the attributional LCA, indicate that LF contributes 10% more to the global warming potential (GWP) than TL. 60% of the difference, can be related to an increased reflow energy consumption, and 40% to an increased tin production. The production of flux contributed to about 5 % of the total GWP results for both solders. We have recently started the consequential LCA. It aims at describing how the environmental burdens of the technosphere are affected by a shift from TL to LF. It will describe, for example, to what extent the shift means that the total use of lead is reduced, and to what extent it means that the use of lead will increase in other life cycles. We do not expect the consequential LCA to include all inputs to the solder, because, for each input in the analysis, we need to investigate the supply curve as well as the demand curve, identifying price elasticities, marginal production, and marginal consumption.
  •  
7.
  • Andrae, Anders, 1973, et al. (författare)
  • Uncertainty estimation by Monte Carlo simulation applied to life cycle inventory of cordless phones and microscale metallization processes
  • 2004
  • Ingår i: IEEE transactions on electronics packaging manufacturing (Print). - 1521-334X .- 1558-0822. ; 27:4, s. 233-245, s. 206-217
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on uncertainty analysis, that is, how the input data uncertainty affects the output data uncertainty in small but realistic product systems. The motivation for the study is to apply the Monte Carlo simulation for uncertainty estimation in life cycle inventory and environmental assessment of microelectronics applications. The present paper addresses the question whether there is an environmental advantage of using digital enhanced cordless telecommunications (DECT) phones instead of global system for mobile (GSM) phones in offices. This paper also addresses the environmental compatibility of electrochemical pattern replication (ECPR) compared to classical photolithography-based microscale metallization (CL) for pattern transfer. Both environmental assessments in this paper consider electricity consumption and CO2 emissions and the projects undertaken are two comparative studies of DECT phone/GSM phone and ECPR/CL, respectively. The research method used was probabilistic uncertainty modeling with a limited number of inventory parameters used in the MATLAB tool. For the DECT/GSM study the results reflects the longer DECT technical life which is an environmental advantage. For the electrochemical pattern replication (ECPR)/classical photolithography based microscale metallization (CL) study the results reflects the fewer number of process steps and the lower electricity consumption needed by the ECPR to reach the functional unit. The difference in results is large enough to be able to draw conclusions, as the processes, having the highest electricity consumption within the system boundaries have been determined. Based on an earlier work, a straightforward method to include uncertainty for input life cycle inventory data is used to quantify the influence of realistic errors for input data in two microelectronic applications. The conclusion is that the ECPR technology is more electricity efficient than CL in producing one layer of copper on a silicon wafer having a diameter of 20.32 cm. Furthermore, the longer technical life of a cordless DECT phone is reflected in an electricity/CO2 comparison with a GSM phone, if office use is considered. Reasonable uncertainty intervals, used for the input life cycle inventory data for the studied DECT/GSM and ECPR/CL system, does affect the outcome of calculation of emission of CO2, but not to the degree that conclusions are not valid. Different uncertainty intervals and probability distributions could apply for different types of data and the interrelated input data dependencies should be investigated. Today there exist very few life cycle inventory (LCI) data with the range of uncertainty for input and output elements. It must be emphasized that the upcoming LCI databases should have standard deviation characterized LCI data just as the Swiss ecoinvent LCI database. More inventory parameters and probability distributions characteristic for microsystems could be included and error analysis should be applied to future life inventory methodology, especially for future packaging concepts such as system-in-a-package and system-on-a-chip comparisons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy