SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blankenberg Stefan) srt2:(2010-2014)"

Sökning: WFRF:(Blankenberg Stefan) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Köttgen, Anna, et al. (författare)
  • New loci associated with kidney function and chronic kidney disease
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:5, s. 376-384
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 individuals of European ancestry from 20 predominantly population-based studies in order to identify new susceptibility loci for reduced renal function as estimated by serum creatinine (eGFRcrea), serum cystatin c (eGFRcys) and CKD (eGFRcrea < 60 ml/min/1.73 m2; n = 5,807 individuals with CKD (cases)). Follow-up of the 23 new genome-wide–significant loci (P < 5 × 10−8) in 22,982 replication samples identified 13 new loci affecting renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2 and SLC7A9) and 7 loci suspected to affect creatinine production and secretion (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72 and BCAS3). These results further our understanding of the biologic mechanisms of kidney function by identifying loci that potentially influence nephrogenesis, podocyte function, angiogenesis, solute transport and metabolic functions of the kidney.
  •  
2.
  • Schunkert, Heribert, et al. (författare)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:4, s. 153-333
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
3.
  • Voight, Benjamin F, et al. (författare)
  • Plasma HDL cholesterol and risk of myocardial infarction : a mendelian randomisation study
  • 2012
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 380:9841, s. 572-580
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.METHODS: We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20,913 myocardial infarction cases, 95,407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FINDINGS: Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10(-13)) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69-2·69, p=2×10(-10)).INTERPRETATION: Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
  •  
4.
  • Wild, Philipp S., et al. (författare)
  • A Genome-Wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease
  • 2011
  • Ingår i: Circulation: Cardiovascular Genetics. - : American Heart Association/Lippincott, Williams & Wilkins. - 1942-325X .- 1942-3268. ; 4:4, s. 203-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-eQTL analyses are important to improve the understanding of genetic association results. We performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). Methods and Results-In a genome-wide association analysis of 2078 CAD cases and 2953 control subjects, we identified 950 single-nucleotide polymorphisms (SNPs) that were associated with CAD at P<10(-3). Subsequent in silico and wet-laboratory replication stages and a final meta-analysis of 21 428 CAD cases and 38 361 control subjects revealed a novel association signal at chromosome 10q23.31 within the LIPA (lysosomal acid lipase A) gene (P=3.7 x 10(-8); odds ratio, 1.1; 95% confidence interval, 1.07 to 1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3 x 10(-96)). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4 x 10(-3)). Conclusions-The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which was related to endothelial dysfunction, a precursor of CAD. (Circ Cardiovasc Genet. 2011;4:403-412.)
  •  
5.
  • Davison, Lucy J, et al. (författare)
  • Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:2, s. 322-333
  • Tidskriftsartikel (refereegranskat)abstract
    • The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes.
  •  
6.
  • Lim, Elaine T, et al. (författare)
  • Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5%) variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10-8) including splice variants in LPA that lowered plasma lipoprotein(a) levels (P = 1.5×10-117). Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10-4), demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health Registers.
  •  
7.
  •  
8.
  • Villard, Eric, et al. (författare)
  • A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy
  • 2011
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 32:9, s. 1065-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Dilated cardiomyopathy (DCM) is a major cause of heart failure with a high familial recurrence risk. So far, the genetics of DCM remains largely unresolved. We conducted the first genome-wide association study (GWAS) to identify loci contributing to sporadic DCM.Methods and results: One thousand one hundred and seventy-nine DCM patients and 1108 controls contributed to the discovery phase. Pools of DNA stratified on disease status, population, age, and gender were constituted and used for testing association of DCM with 517 382 single nucleotide polymorphisms (SNPs). Three DCM-associated SNPs were confirmed by individual genotyping (P < 5.0 10−7), and two of them, rs10927875 and rs2234962, were replicated in independent samples (1165 DCM patients and 1302 controls), with P-values of 0.002 and 0.009, respectively. rs10927875 maps to a region on chromosome 1p36.13 which encompasses several genes among which HSPB7 has been formerly suggested to be implicated in DCM. The second identified locus involves rs2234962, a non-synonymous SNP (c.T757C, p. C151R) located within the sequence of BAG3 on chromosome 10q26. To assess whether coding mutations of BAG3 might cause monogenic forms of the disease, we sequenced BAG3 exons in 168 independent index cases diagnosed with familial DCM and identified four truncating and two missense mutations. Each mutation was heterozygous, present in all genotyped relatives affected by the disease and absent in a control group of 347 healthy individuals, strongly suggesting that these mutations are causing the disease.Conclusion: This GWAS identified two loci involved in sporadic DCM, one of them probably implicates BAG3. Our results show that rare mutations in BAG3 contribute to monogenic forms of the disease, while common variant(s) in the same gene are implicated in sporadic DCM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy