SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Carlson R. F.) srt2:(2020-2021)"

Sökning: WFRF:(Carlson R. F.) > (2020-2021)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lagou, Vasiliki, et al. (författare)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
3.
  • Dalton, A. S., et al. (författare)
  • An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex
  • 2020
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 234
  • Tidskriftsartikel (refereegranskat)abstract
    • The North American Ice Sheet Complex (NAISC; consisting of the Laurentide, Cordilleran and Innuitian ice sheets) was the largest ice mass to repeatedly grow and decay in the Northern Hemisphere during the Quaternary. Understanding its pattern of retreat following the Last Glacial Maximum is critical for studying many facets of the Late Quaternary, including ice sheet behaviour, the evolution of Holocene landscapes, sea level, atmospheric circulation, and the peopling of the Americas. Currently, the most up-to-date and authoritative margin chronology for the entire ice sheet complex is featured in two publications (Geological Survey of Canada Open File 1574 [Dyke et al., 2003]; 'Quaternary Glaciations - Extent and Chronology, Part II' [Dyke, 2004]). These often-cited datasets track ice margin recession in 36 time slices spanning 18 ka to 1 ka (all ages in uncalibrated radiocarbon years) using a combination of geomorphology, stratigraphy and radiocarbon dating. However, by virtue of being over 15 years old, the ice margin chronology requires updating to reflect new work and important revisions. This paper updates the aforementioned 36 ice margin maps to reflect new data from regional studies. We also update the original radiocarbon dataset from the 2003/2004 papers with 1541 new ages to reflect work up to and including 2018. A major revision is made to the 18 ka ice margin, where Banks and Eglinton islands (once considered to be glacial refugia) are now shown to be fully glaciated. Our updated 18 ka ice sheet increased in areal extent from 17.81 to 18.37 million km(2), which is an increase of 3.1% in spatial coverage of the NAISC at that time. Elsewhere, we also summarize, region-by-region, significant changes to the deglaciation sequence. This paper integrates new information provided by regional experts and radiocarbon data into the deglaciation sequence while maintaining consistency with the original ice margin positions of Dyke et al. (2003) and Dyke (2004) where new information is lacking; this is a pragmatic solution to satisfy the needs of a Quaternary research community that requires up-to-date knowledge of the pattern of ice margin recession of what was once the world's largest ice mass. The 36 updated isochrones are available in PDF and shapefile format, together with a spreadsheet of the expanded radiocarbon dataset (n = 5195 ages) and estimates of uncertainty for each interval. (C) 2020 Elsevier Ltd. All rights reserved.
  •  
4.
  •  
5.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
6.
  •  
7.
  • Bhattacharyya, A., et al. (författare)
  • Neutron capture cross sections of light neutron-rich nuclei relevant for -process nucleosynthesis
  • 2021
  • Ingår i: Physical Review C. - 2469-9993 .- 2469-9985. ; 104:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurements of neutron capture cross sections of neutron-rich nuclei are challenging but essential for understanding nucleosynthesis and stellar evolution processes in the explosive burning scenario. In the quest of -process abundances, according to the neutrino-driven-wind model, light neutron-rich unstable nuclei may play a significant role as seed nuclei that influence the abundance pattern. Hence, experimental data for neutron capture cross sections of neutron-rich nuclei are needed. Coulomb dissociation of radioactive ion beams at intermediate energy is a powerful indirect method for inferring capture cross section. As a test case for validation of the indirect method, the neutron capture cross section (, ) for was inferred from the Coulomb dissociation of at intermediate energy ( MeV). A comparison between different theoretical approaches and experimental results for the reaction is discussed. We report for the first time experimental reaction cross sections of , , , and . The reaction cross sections were inferred indirectly through Coulomb dissociation of , , and at incident projectile energies around 400-430 MeV using the FRS-LAND setup at GSI, Darmstadt. The neutron capture cross sections were obtained from the photoabsorption cross sections with the aid of the detailed balance theorem. The reaction rates for the neutron-rich Na, Mg, Al nuclei at typical -process temperatures were obtained from the measured () capture cross sections. The measured neutron capture reaction rates of the neutron-rich nuclei, , , and are significantly lower than those predicted by the Hauser-Feshbach decay model. A similar trend was observed earlier for and but in the case of the trend is opposite. The situation is more complicated when the ground state has a multi-particle-hole configuration. For , the measured cross section is about higher than the Hauser-Feshbach prediction.
  •  
8.
  • Panico, B., et al. (författare)
  • Cosmic Rays Investigation by the PAMELA experiment
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) is a satellite-borne experiment. It was launched on June 15th 2006 from the Baikonur space centre on board the Russian Resurs-DK1 satellite. For about 10 years PAMELA took data, giving a fundamental contribution to the cosmic ray physics. It made high-precision measurements of the charged component of the cosmic radiation challenging the standard model of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy and in the heliosphere. PAMELA gave results on different topics on a very wide range of energy. Moreover, the long PAMELA life gives the possibility to study the variation of the proton, electron and positron spectra during the last solar minimum. The time dependence of the cosmic-ray proton and helium nuclei from the solar minimum through the following period of solar maximum activity is currently being studied. Low energy particle spectra were accurately measured also for various solar events that occurred during the PAMELA mission. In this paper a review of main PAMELA results will be reported.
  •  
9.
  • Panico, B., et al. (författare)
  • Time dependence of the proton and helium flux measured by PAMELA
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation, but, near Earth, cosmic rays are significantly affected by the solar magnetic field which changes over time. The time dependence of proton and electron spectra were measured from July 2006 to December 2009 by PAMELA experiment, that is a ballooon-borne experiment collecting data since 15 June 2006. These studies allowed to obtain a more complete description of the cosmic radiation, providing fundamental information about the transport and modulation of cosmic rays inside the heliosphere. The study of the time dependence of the cosmic-ray protons and helium nuclei from the unusual 23rd solar minimum through the following period of solar maximum activity is presented.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy