SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eisen Michael B.) srt2:(2010-2014)"

Sökning: WFRF:(Eisen Michael B.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rands, Chris M., et al. (författare)
  • Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence
  • 2013
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 14, s. 95-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin's (Galapagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galapagos archipelago took place in the last 2-3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results: 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin's finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions: These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin's finches.
  •  
2.
  •  
3.
  • Kyrpides, Nikos C, et al. (författare)
  • Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
  •  
4.
  •  
5.
  • Rübel, Oliver, et al. (författare)
  • Integrating data clustering and visualization for the analysis of 3D gene expression data
  • 2010
  • Ingår i: IEEE/ACM Transactions on Computational Biology & Bioinformatics. - 1545-5963 .- 1557-9964. ; 7:1, s. 64-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex data sets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss 1) the integration of data clustering and visualization into one framework, 2) the application of data clustering to 3D gene expression data, 3) the evaluation of the number of clusters k in the context of 3D gene expression clustering, and 4) the improvement of overall analysis quality via dedicated postprocessing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy