SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fan Bin) srt2:(2020-2021)"

Sökning: WFRF:(Fan Bin) > (2020-2021)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fan, Chuan-Wen, et al. (författare)
  • Prognostic Heterogeneity of MRE11 Based on the Location of Primary Colorectal Cancer Is Caused by Activation of Different Immune Signals
  • 2020
  • Ingår i: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: MRE11 plays an important role in DNA damage response for the maintenance of genome stability, and is becoming a prognostic marker for cancers, including colorectal cancer (CRC). However, the correlations of MRE11 to prognosis and tumor-infiltrating inflammatory cells (TIICs) in different locations of CRC remains unclear.Methods: Among Swedish and TCGA-COREAD patients, we investigated the association of MRE11 expression, tumor-infiltrating inflammatory cells (TIICs) and microsatellite status with survival in right-sided colon cancer (RSCC) and left-sided colon and rectal cancer (LSCRC). The signaling of MRE11-related was further analyzed using weighted gene co-expression network analysis and ClueGO. Results: High MRE11 expression alone or combination of high MRE11 expression with high TIICs was related to favorable prognosis in LSCRC. Moreover, high MRE11 expression was associated with favorable prognosis in LSCRC with microsatellite stability. The relationships above were adjusted for tumor stage, differentiation, and/or TIICs. However, no such evidence was observed in RSCC. Several signaling pathways involving MRE11 were found to be associated with cell cycle and DNA repair in RSCC and LSCRC, whereas, the activation of the immune response and necrotic cell death were specifically correlated with LSCRC.Conclusions: High MRE11 expression is an independent prognostic marker in LSCRC and enhanced prognostic potency of combining high MRE11 with high TIICs in LSCRC, mainly due to differential immune signaling activated by MRE11 in RSCC and LSCRC, respectively.
  •  
2.
  • Cheng, Jie, et al. (författare)
  • Interactions in Composite Film Formation of Mefp-1/graphene on Carbon Steel
  • 2021
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mefp-1 adhesive protein derived from marine blue mussels, together with the 2D material graphene, was used to build the green composite film with enhanced anti-corrosion property and mechanical strength. The corrosion inhibition of the composite film, formed by different methods, was evaluated by using electrochemical impedance spectroscopy. The non-degraded adhesion of the composite film to the carbon steel substrate was proved by nano-scratch tests. Infrared spectroscopy was utilized to investigate the film formation process and "three-body interactions " between Mefp-1, graphene and carbon steel surface. The results show that the Mefp-1 adsorbs on the carbon steel surface mainly through the covalent bond between catechols and Fe(III). Meanwhile, Mefp-1 can bond to non-adhesive graphene by forming hydrogen bonds and pi-pi interaction non-covalent bonds, which facilitate the formation of a robust Mefp-1/graphene composite film on the carbon steel surface.
  •  
3.
  • Deng, Bin, et al. (författare)
  • Modelling asymmetric deformation along a curved strike-slip basement-fault system
  • 2021
  • Ingår i: International journal of earth sciences. - : Springer. - 1437-3254 .- 1437-3262. ; 110, s. 165-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale curved strike-slip fault systems along which significant amounts of displacement have taken place are common in nature. Scaled analogue experiments were used in this study to investigate strike-slip deformation in cover units above a curved basement-fault system simulated by a rigid plate with an in-built curvature depicting a half-circular fault. The model results show that en-echelon, right-stepping Riedel shears and low-angle synthetic shears (Y-shears) always form at the beginning of deformation, and grow outwards with splay faults, most of which evolve into thrusts at later stages of deformation. Digital image correlation (DIC) analyses of the surface displacement vectors show that a diffuse zone of deformation progressively changes into en-echelon shears, which gradually develop into throughgoing shear zones with further deformation. The geometries of Riedel shears along two sides of the basement fault (i.e. concave and convex sides) show significant differences in fault shape and intersection angles between the faults and the curved basement fault, indicating an asymmetry in deformation with a much wider deformation zone occurring on the concave side. As a result, en-echelon and/or overlapping flower structures develop along the curved basement strike-slip fault system. In particular, Riedel shears with a upward-convex geometry are localised in both sides of the curved basement fault and a continuous reverse oblique-slip fault forms at the concave side. When compared with the geometry of curved strike-slip faults in nature (e.g. the Daliangshan shear zone in Xichang basin and the Red River shear zone in the Yinggehai basin, China) the model results depict the asymmetric evolution pattern of the faults on either side of curved basement faults.
  •  
4.
  • Fan, Dongming, et al. (författare)
  • Robustness of maintenance support service networks : attributes, evaluation and improvement
  • 2021
  • Ingår i: Reliability Engineering & System Safety. - : Elsevier. - 0951-8320 .- 1879-0836. ; 210
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintenance support service network (MSSN) is used to provide maintenance services and maintain the operational status of equipment. However, the performance of MSSN has been significantly influenced by inevitable disturbance, which makes it vital to maintain its robustness. Existing research on robustness of MSSN mainly focuses on single-layer rather than two-layer network, which imposes constraints on the disturbances and limits its application. To solve these issues, this study develops a two-layer MSSN, consisting of a directed entity-layer and an undirected cyber-layer focusing on supporting maintenance service. A definition of robustness for two-layer MSSN is proposed, and effect propagation models are established to evaluate its robustness of MSSN, followed by its improvement strategies. In particular, two strategies applied in the single-layer MSSN are modified to adapt to the two-layer MSSN, and a novel greedy partnership building approach is proposed to find an optimal strategy under cascading failure, to maintain the robustness of MSSN from a complex network perspective. Finally, numerical examples are presented to illustrate the effectiveness of the proposed approach.
  •  
5.
  • Fan, Jin, et al. (författare)
  • Design of Ultra-Wideband Phased Array Feed for Radio Telescope
  • 2020
  • Ingår i: 2020 33rd General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2020.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents an ultra-wideband Phased Array Feed (PAF) based on novel flat bend crossed dipole fed by 50Ohm coaxial line. The PAF is dual-polarized and made from all-metal to minimize Ohmic losses and simplify cryogenic integration. It is optimized for 1-2 GHz band and can be good PAF candidate for the Five hundred meter Aperture Spherical Telescope (FAST) and Qi Tai Telescope (QTT) as well as other radio telescopes.
  •  
6.
  • Fan, Zhirui, et al. (författare)
  • Multiscale eigenfrequency optimization of multimaterial lattice structures based on the asymptotic homogenization method
  • 2020
  • Ingår i: Structural and Multidisciplinary Optimization. - : Springer Science and Business Media LLC. - 1615-147X .- 1615-1488. ; 61:3, s. 983-998
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultralight lattice structures exhibit excellent mechanical performance and have been used widely. In structural design, the fundamental frequency is highly important. Therefore, a multiscale topology optimization method was utilized to optimize the fundamental frequency of multimaterial lattice structures in this study. Two types of optimization problems were studied, namely, maximizing the natural fundamental frequency with mass constraints and minimizing compliance with frequency constraints. The Heaviside-penalty-based discrete material optimization method was adopted for the optimal selection of candidate materials. The asymptotic homogenization method was used to evaluate the equivalent macroscale properties according to the microstructure of the lattice material. To enable gradient optimization, sensitivities were outlined in detail. A density filter with a volume-preserving Heaviside projection was used to eliminate the risk of a checkerboard pattern and reduce the number of gray elements. A polynomial penalization scheme was employed to eliminate localized spurious eigenmodes in the low-density region. Finally, several numerical examples were performed to validate the proposed method. These numerical examples resulted in novel microstructural configurations with remarkably improved vibration resistance.
  •  
7.
  • Sun, Huiliang, et al. (författare)
  • Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells
  • 2020
  • Ingår i: Science China Chemistry. - : Springer Science and Business Media LLC. - 1869-1870 .- 1674-7291. ; 63:12, s. 1785-1792
  • Tidskriftsartikel (refereegranskat)abstract
    • The open-circuit voltage (Voc) of all-polymer solar cells (all-PSCs) is typically lower than 0.9 V even for the most efficient ones. Large energy loss is the main reason for limiting Voc and efficiency of all-PSCs. Herein, through materials design using electron deficient building blocks based on bithiophene imides, the lowest unoccupied molecular orbital (LUMO) energy levels of polymer acceptors can be effectively tuned, which resulted in a reduced energy loss induced by charge generation and recombination loss due to the suppressed charge-transfer (CT) state absorption. Despite a negligible driving force, all-PSC based on the polymer donor and acceptor combination with well-aligned energy levels exhibited efficient charge transfer and achieved an external quantum efficiency over 10% while maintaining a large Voc of 1.02 V, leading to a 9.21% efficiency. Through various spectroscopy approaches, this work sheds light on the mechanism of energy loss in all-PSCs, which paves an avenue to achieving efficient all-PSCs with large Voc and drives the further development of all-PSCs.
  •  
8.
  • Sun, Huiliang, et al. (författare)
  • Reducing energy lossviatuning energy levels of polymer acceptors for efficient all-polymer solar cells
  • 2020
  • Ingår i: Science China Chemistry. - : Science China Press and Springer-Verlag GmbH Germany. - 1674-7291 .- 1869-1870. ; 63, s. 1785-1792
  • Tidskriftsartikel (refereegranskat)abstract
    • The open-circuit voltage (V-oc) of all-polymer solar cells (all-PSCs) is typically lower than 0.9 V even for the most efficient ones. Large energy loss is the main reason for limitingV(oc)and efficiency of all-PSCs. Herein, through materials design using electron deficient building blocks based on bithiophene imides, the lowest unoccupied molecular orbital (LUMO) energy levels of polymer acceptors can be effectively tuned, which resulted in a reduced energy loss induced by charge generation and recombination loss due to the suppressed charge-transfer (CT) state absorption. Despite a negligible driving force, all-PSC based on the polymer donor and acceptor combination with well-aligned energy levels exhibited efficient charge transfer and achieved an external quantum efficiency over 10% while maintaining a largeV(oc)of 1.02 V, leading to a 9.21% efficiency. Through various spectroscopy approaches, this work sheds light on the mechanism of energy loss in all-PSCs, which paves an avenue to achieving efficient all-PSCs with largeV(oc)and drives the further development of all-PSCs.
  •  
9.
  •  
10.
  • Zhang, Yifei, et al. (författare)
  • Superionic Conductivity in Ceria-Based Heterostructure Composites for Low-Temperature Solid Oxide Fuel Cells
  • 2020
  • Ingår i: Nano-Micro Letters. - : Springer Science and Business Media LLC. - 2150-5551 .- 2311-6706. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceria-based heterostructure composite (CHC) has become a new stream to develop advanced low-temperature (300–600 °C) solid oxide fuel cells (LTSOFCs) with excellent power outputs at 1000 mW cm−2 level. The state-of-the-art ceria–carbonate or ceria–semiconductor heterostructure composites have made the CHC systems significantly contribute to both fundamental and applied science researches of LTSOFCs; however, a deep scientific understanding to achieve excellent fuel cell performance and high superionic conduction is still missing, which may hinder its wide application and commercialization. This review aims to establish a new fundamental strategy for superionic conduction of the CHC materials and relevant LTSOFCs. This involves energy band and built-in-field assisting superionic conduction, highlighting coupling effect among the ionic transfer, band structure and alignment impact. Furthermore, theories of ceria–carbonate, e.g., space charge and multi-ion conduction, as well as new scientific understanding are discussed and presented for functional CHC materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy