SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Flicek Paul) srt2:(2015-2019)"

Sökning: WFRF:(Flicek Paul) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paul, Dirk S., et al. (författare)
  • Increased DNA methylation variability in type 1 diabetes across three immune effector cell types
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.
  •  
2.
  •  
3.
  • Aken, Bronwen L., et al. (författare)
  • The Ensembl gene annotation system
  • 2016
  • Ingår i: Database. - : Oxford University Press (OUP). - 1758-0463.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.
  •  
4.
  •  
5.
  • Auffray, Charles, et al. (författare)
  • Making sense of big data in health research: Towards an EU action plan
  • 2016
  • Ingår i: Genome Medicine. - : BIOMED CENTRAL LTD. - 1756-994X. ; 8:71
  • Tidskriftsartikel (refereegranskat)abstract
    • Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health arid healthcare for all Europearis.
  •  
6.
  • Dyke, Stephanie O M, et al. (författare)
  • Epigenome data release : a participant-centered approach to privacy protection
  • 2015
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale epigenome mapping by the NIH Roadmap Epigenomics Project, the ENCODE Consortium and the International Human Epigenome Consortium (IHEC) produces genome-wide DNA methylation data at one base-pair resolution. We examine how such data can be made open-access while balancing appropriate interpretation and genomic privacy. We propose guidelines for data release that both reduce ambiguity in the interpretation of open-access data and limit immediate access to genetic variation data that are made available through controlled access.
  •  
7.
  • Pettersson, Mats, et al. (författare)
  • A chromosome-level assembly of the Atlantic herring : detection of a supergene and other signals of selection
  • 2019
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory Press (CSHL). - 1088-9051 .- 1549-5469. ; 29:11, s. 1919-1928
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atlantic herring is a model species for exploring the genetic basis for ecological adaptation, due to its huge population size and extremely low genetic differentiation at selectively neutral loci. However, such studies have so far been hampered because of a highly fragmented genome assembly. Here, we deliver a chromosome-level genome assembly based on a hybrid approach combining a de novo Pacific Biosciences (PacBio) assembly with Hi-C-supported scaffolding. The assembly comprises 26 autosomes with sizes ranging from 12.4 to 33.1 Mb and a total size, in chromosomes, of 726 Mb, which has been corroborated by a high-resolution linkage map. A comparison between the herring genome assembly with other high-quality assemblies from bony fishes revealed few inter-chromosomal but frequent intra-chromosomal rearrangements. The improved assembly facilitates analysis of previously intractable large-scale structural variation, allowing, for example, the detection of a 7.8-Mb inversion on Chromosome 12 underlying ecological adaptation. This supergene shows strong genetic differentiation between populations. The chromosome-based assembly also markedly improves the interpretation of previously detected signals of selection, allowing us to reveal hundreds of independent loci associated with ecological adaptation.
  •  
8.
  • Ruffier, Magali, et al. (författare)
  • Ensembl core software resources : storage and programmatic access for DNA sequence and genome annotation
  • 2017
  • Ingår i: Database. - : OXFORD UNIV PRESS. - 1758-0463.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ensembl software resources are a stable infrastructure to store, access and manipulate genome assemblies and their functional annotations. The Ensembl 'Core' database and Application Programming Interface (API) was our first major piece of software infrastructure and remains at the centre of all of our genome resources. Since its initial design more than fifteen years ago, the number of publicly available genomic, transcriptomic and proteomic datasets has grown enormously, accelerated by continuous advances in DNA-sequencing technology. Initially intended to provide annotation for the reference human genome, we have extended our framework to support the genomes of all species as well as richer assembly models. Cross-referenced links to other informatics resources facilitate searching our database with a variety of popular identifiers such as UniProt and RefSeq. Our comprehensive and robust framework storing a large diversity of genome annotations in one location serves as a platform for other groups to generate and maintain their own tailored annotation. We welcome reuse and contributions: our databases and APIs are publicly available, all of our source code is released with a permissive Apache v2.0 licence at http://github.com/Ensembl and we have an active developer mailing list (http://www.ensembl.org/info/about/contact/index.html).
  •  
9.
  • Saunders, Gary, et al. (författare)
  • Leveraging European infrastructures to access 1 million human genomes by 2022
  • 2019
  • Ingår i: Nature reviews genetics. - : Springer Nature. - 1471-0056 .- 1471-0064. ; 20:11, s. 693-701
  • Tidskriftsartikel (refereegranskat)abstract
    • Human genomics is undergoing a step change from being a predominantly research-driven activity to one driven through health care as many countries in Europe now have nascent precision medicine programmes. To maximize the value of the genomic data generated, these data will need to be shared between institutions and across countries. In recognition of this challenge, 21 European countries recently signed a declaration to transnationally share data on at least 1 million human genomes by 2022. In this Roadmap, we identify the challenges of data sharing across borders and demonstrate that European research infrastructures are well-positioned to support the rapid implementation of widespread genomic data access.
  •  
10.
  • Uebbing, Severin, et al. (författare)
  • Divergence in gene expression within and between two closely related flycatcher species
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 25:9, s. 2015-2028
  • Tidskriftsartikel (refereegranskat)abstract
    • Relatively little is known about the character of gene expression evolution as species diverge. It is for instance unclear if gene expression generally evolves in a clock-like manner (by stabilizing selection or neutral evolution) or if there are frequent episodes of directional selection. To gain insights into the evolutionary divergence of gene expression, we sequenced and compared the transcriptomes of multiple organs from population samples of collared (Ficedula albicollis) and pied flycatchers (F. hypoleuca), two species which diverged less than one million years ago. Ordination analysis separated samples by organ rather than by species. Organs differed in their degrees of expression variance within species and expression divergence between species. Variance was negatively correlated with expression breadth and protein interactivity, suggesting that pleiotropic constraints reduce gene expression variance within species. Variance was correlated with between-species divergence, consistent with a pattern expected from stabilizing selection and neutral evolution. Using an expression PST approach, we identified genes differentially expressed between species and found 16 genes uniquely expressed in one of the species. For one of these, DPP7, uniquely expressed in collared flycatcher, the absence of expression in pied flycatcher could be associated with a ≈ 20 kb deletion including 11 out of 13 exons. This study of a young vertebrate speciation model system expands our knowledge of how gene expression evolves as natural populations become reproductively isolated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy