SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gatu Johnson Maria) srt2:(2008)"

Sökning: WFRF:(Gatu Johnson Maria) > (2008)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Conroy, Sean W., et al. (författare)
  • Neutron spectrometer for ITER using silicon detectors
  • 2008
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:10, s. 10E508-
  • Tidskriftsartikel (refereegranskat)abstract
    • High resolution neutron spectrometers provide information about plasma parameters at existing fusion experiments. Such a system may also be employed at ITER. Proton recoil telescopes have classically been used to detect neutrons with good energy resolution but poor efficiency. Using annular silicon detectors, it is possible to greatly increase the solid angle coverage and hence improve efficiency. Based on a simulation (MCNPX) study, the scaling of energy resolution, efficiency, and time to determine an ion temperature to 10% accuracy on foil thickness and detector location is shown. The latter quantity is used to determine the optimum foil thickness and detector geometry for specific plasma temperatures. For a 20 keV deuterium-tritium (DT) plasma, 5.3% resolution with efficiency of 2.9x10(-4) n cm(2) is attainable using the available detectors. This gives a temperature measurement with 10% accuracy in 1.1 ms for a neutron flux of 2x10(9) n cm(-2). Multiple detectors can be used to further increase the efficiency if needed. A system of this kind could be tested in a future DT campaign at, for example, JET.
  •  
2.
  • Gatu Johnson, Maria, et al. (författare)
  • The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 591:2, s. 417-430
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of > 100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to > 5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.
  •  
3.
  •  
4.
  • Hellesen, Carl, et al. (författare)
  • Validation of TRANSP Simulations Using Neutron emission Spectroscopy with Dual Sight Lines
  • 2008
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:10, s. 10E510-
  • Tidskriftsartikel (refereegranskat)abstract
    • A method to generate modeled neutron spectra from bulk and fast ion distributions simulated by TRANSP has been developed. In this paper, modeled data generated from fuel ion distrubutions modeled with TRANSP is compared to measured data from two neutron spectrometers with different lines of sight; TOFOR with a radial one and the MPRu with a tangential one. The information obtained from the analysis of the measured neutron spectra such as the relative intensity of the emission from different ion populations places additional constraints on the simulation and can be used to adjust the parameters of the simulation.
  •  
5.
  • Ronchi, E, et al. (författare)
  • A Neural Networks Framework for Real-Time Unfolding of Neutron Spectroscopic Data at JET
  • 2008
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:10, s. 10E513-
  • Tidskriftsartikel (refereegranskat)abstract
    • A determination of fast ion population parameters such as intensity and kinetic temperature is important for fusion reactors. This becomes more challenging with finer time resolution of the measurements, since the limited data in each time slice cause increasing statistical variations in the data. This paper describes a framework using Bayesian-regularized neural networks (NNs) designed for such a task. The method is applied to the TOFOR 2.5 MeV fusion neutron spectrometer at JET. NN training data are generated by random sampling of variables in neutron spectroscopy models. Ranges and probability distributions of the parameters are chosen to match the experimental data. Results have shown good performance both on synthetic and experimental data. The latter was assessed by statistical considerations and by examining the robustness and time consistency of the results. The regularization of the training algorithm allowed for higher time resolutions than simple forward methods. The fast execution time makes this approach suitable for real-time analysis with a time resolution limit in the microsecond time scale.
  •  
6.
  • Sjöstrand, Henrik, et al. (författare)
  • Fusion Power Measurement Using a Combined Neutron Spectrometer - Camera System at ITER
  • 2008
  • Ingår i: BURNING PLASMA DIAGNOSTICS. - New York : American Institute of Physics (AIP). - 9780735405073 ; , s. 319-322
  • Konferensbidrag (refereegranskat)abstract
    • A central task for fusion plasma diagnostics is to measure the 2.5 and 14 MeV neutron emission rate in order to determine the fusion power. A new method for determining the neutron yield has been developed at JET. It makes use of the magnetic proton recoil neutron spectrometer and a neutron camera and provides the neutron yield with small systematic errors. At ITER a similar system could operate if a high-resolution, high-performance neutron spectrometer similar to the MPR was installed. In this paper, we present how such system could be implemented and how well it would perform under different assumption of plasma scenarios and diagnostic capabilities. It is found that the systematic uncertainty for using such a system as an absolute calibration reference is as low as 3 % and hence it would be an excellent candidate for the calibration of neutron monitors such as fission chambers. It is also shown that the system could provide a 1 ms time resolved estimation of the neutron rate with a total uncertainty of 5 %.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy