SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giddaluru S) srt2:(2018)"

Sökning: WFRF:(Giddaluru S) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davies, G., et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
  •  
2.
  • Witoelar, A, et al. (författare)
  • Meta-analysis of Alzheimer's disease on 9,751 samples from Norway and IGAP study identifies four risk loci
  • 2018
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 18088-
  • Tidskriftsartikel (refereegranskat)abstract
    • A large fraction of genetic risk factors for Alzheimer’s Disease (AD) is still not identified, limiting the understanding of AD pathology and study of therapeutic targets. We conducted a genome-wide association study (GWAS) of AD cases and controls of European descent from the multi-center DemGene network across Norway and two independent European cohorts. In a two-stage process, we first performed a meta-analysis using GWAS results from 2,893 AD cases and 6,858 cognitively normal controls from Norway and 25,580 cases and 48,466 controls from the International Genomics of Alzheimer’s Project (IGAP), denoted the discovery sample. Second, we selected the top hits (p < 1 × 10−6) from the discovery analysis for replication in an Icelandic cohort consisting of 5,341 cases and 110,008 controls. We identified a novel genomic region with genome-wide significant association with AD on chromosome 4 (combined analysis OR = 1.07, p = 2.48 x 10-8). This finding implicated HS3ST1, a gene expressed throughout the brain particularly in the cerebellar cortex. In addition, we identified IGHV1-68 in the discovery sample, previously not associated with AD. We also associated USP6NL/ECHDC3 and BZRAP1-AS1 to AD, confirming findings from a follow-up transethnic study. These new gene loci provide further evidence for AD as a polygenic disorder, and suggest new mechanistic pathways that warrant further investigation.
  •  
3.
  • Stokowy, T, et al. (författare)
  • Genetic variation in 117 myelination-related genes in schizophrenia: Replication of association to lipid biosynthesis genes
  • 2018
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 6915-
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a serious psychotic disorder with high heritability. Several common genetic variants, rare copy number variants and ultra-rare gene-disrupting mutations have been linked to disease susceptibility, but there is still a large gap between the estimated and explained heritability. Since several studies have indicated brain myelination abnormalities in schizophrenia, we aimed to examine whether variants in myelination-related genes could be associated with risk for schizophrenia. We established a set of 117 myelination genes by database searches and manual curation. We used a combination of GWAS (SCZ_N = 35,476; CTRL_N = 46,839), exome chip (SCZ_N = 269; CTRL_N = 336) and exome sequencing data (SCZ_N = 2,527; CTRL_N = 2,536) from schizophrenia cases and healthy controls to examine common and rare variants. We found that a subset of lipid-related genes was nominally associated with schizophrenia (p = 0.037), but this signal did not survive multiple testing correction (FWER = 0.16) and was mainly driven by the SREBF1 and SREBF2 genes that have already been linked to schizophrenia. Further analysis demonstrated that the lowest nominal p-values were p = 0.0018 for a single common variant (rs8539) and p = 0.012 for burden of rare variants (LRP1 gene), but none of them survived multiple testing correction. Our findings suggest that variation in myelination-related genes is not a major risk factor for schizophrenia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy