SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Giomi M.) srt2:(2021)"

Search: WFRF:(Giomi M.) > (2021)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Karamehmetoglu, Emir, et al. (author)
  • The luminous and rapidly evolving SN 2018bcc : Clues toward the origin of Type Ibn SNe from the Zwicky Transient Facility
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • Context. Supernovae (SNe) Type Ibn are rapidly evolving and bright ( MR;peak similar to 19) transients interacting with He-rich circumstellar material (CSM). SN 2018bcc, detected by the ZTF shortly after explosion, provides the best constraints on the shape of the rising light curve (LC) of a fast Type Ibn.Aims. We used the high-quality data set of SN 2018bcc to study observational signatures of the class. Additionally, the powering mechanism of SN 2018bcc o ffers insights into the debated progenitor connection of Type Ibn SNe.Methods. We compared well-constrained LC properties obtained from empirical models with the literature. We fit the pseudobolometric LC with semi-analytical models powered by radioactive decay and CSM interaction. Finally, we modeled the line profiles and emissivity of the prominent He i lines, in order to study the formation of P-Cygni profiles and to estimate CSM properties.Results. SN 2018bcc had a rise time to peak of the LC of 5:6+0:2 0:1 days in the restframe with a rising shape power-law index close to 2, and seems to be a typical rapidly evolving Type Ibn SN. The spectrum lacked signatures of SN-like ejecta and was dominated by over 15 He emission features at 20 days past peak, alongside Ca and Mg, all with VFWHM similar to 2000 km s 1. The luminous and rapidly evolving LC could be powered by CSM interaction but not by the decay of radioactive 56Ni. Modeling of the He i lines indicated a dense and optically thick CSM that can explain the P-Cygni profiles.Conclusions. Like other rapidly evolving Type Ibn SNe, SN 2018bcc is a luminous transient with a rapid rise to peak powered by shock interaction inside a dense and He-rich CSM. Its spectra do not support the existence of two Type Ibn spectral classes. We also note the remarkable observational match to pulsational pair instability SN models.
  •  
2.
  • van Velzen, Sjoert, et al. (author)
  • Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations : Entering a New Era of Population Studies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:1
  • Journal article (peer-reviewed)abstract
    • While tidal disruption events (TDEs) have long been heralded as laboratories for the study of quiescent black holes, the small number of known TDEs and uncertainties in their emission mechanism have hindered progress toward this promise. Here we present 17 new TDEs that have been detected recently by the Zwicky Transient Facility along with Swift UV and X-ray follow-up observations. Our homogeneous analysis of the optical/UV light curves, including 22 previously known TDEs from the literature, reveals a clean separation of light-curve properties with spectroscopic class. The TDEs with Bowen fluorescence features in their optical spectra have smaller blackbody radii, lower optical luminosities, and higher disruption rates compared to the rest of the sample. The small subset of TDEs that show only helium emission lines in their spectra have the longest rise times, the highest luminosities, and the lowest rates. A high detection rate of Bowen lines in TDEs with small photometric radii could be explained by the high density that is required for this fluorescence mechanism. The stellar debris can provide a source for this dense material. Diffusion of photons through this debris may explain why the rise and fade timescale of the TDEs in our sample are not correlated. We also report, for the first time, the detection of soft X-ray flares from a TDE on similar to day timescales. Based on the fact that the X-ray flares peak at a luminosity similar to the optical/UV blackbody luminosity, we attribute them to brief glimpses through a reprocessing layer that otherwise obscures the inner accretion flow.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view