SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groop L) ;srt2:(2010-2014)"

Sökning: WFRF:(Groop L) > (2010-2014)

  • Resultat 31-40 av 76
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
31.
  • Fagerholm, E., et al. (författare)
  • SNP in the genome-wide association study hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1 diabetes
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 55:9, s. 2386-2393
  • Tidskriftsartikel (refereegranskat)abstract
    • Parental type 2 diabetes mellitus increases the risk of diabetic nephropathy in offspring with type 1 diabetes mellitus. Several single nucleotide polymorphisms (SNPs) that predispose to type 2 diabetes mellitus have recently been identified. It is, however, not known whether such SNPs also confer susceptibility to diabetic nephropathy in patients with type 1 diabetes mellitus. We genotyped nine SNPs associated with type 2 diabetes mellitus in genome-wide association studies in the Finnish population, and tested for their association with diabetic nephropathy as well as with severe retinopathy and cardiovascular disease in 2,963 patients with type 1 diabetes mellitus. Replication of significant SNPs was sought in 2,980 patients from three other cohorts. In the discovery cohort, rs10811661 near gene CDKN2A/B was associated with diabetic nephropathy. The association remained after robust Bonferroni correction for the total number of tests performed in this study (OR 1.33 [95% CI 1.14, 1.56], p = 0.00045, p (36tests) = 0.016). In the meta-analysis, the combined result for diabetic nephropathy was significant, with a fixed effects p value of 0.011 (OR 1.15 [95% CI 1.02, 1.29]). The association was particularly strong when patients with end-stage renal disease were compared with controls (OR 1.35 [95% CI 1.13, 1.60], p = 0.00038). The same SNP was also associated with severe retinopathy (OR 1.37 [95% CI 1.10, 1.69] p = 0.0040), but the association did not remain after Bonferroni correction (p (36tests) = 0.14). None of the other selected SNPs was associated with nephropathy, severe retinopathy or cardiovascular disease. A SNP predisposing to type 2 diabetes mellitus, rs10811661 near CDKN2A/B, is associated with diabetic nephropathy in patients with type 1 diabetes mellitus.
  •  
32.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
33.
  •  
34.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
35.
  • Scott, Robert A., et al. (författare)
  • Common Genetic Variants Highlight the Role of Insulin Resistance and Body Fat Distribution in Type 2 Diabetes, Independent of Obesity
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:12, s. 4378-4387
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp- and oral glucose tolerance test-based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (beta in SDs per allele [95% CI], -0.03 [-0.04, -0.01]; P = 0.004). This score was associated with lower BMI (-0.01 [-0.01, -0.0]; P = 0.02) and gluteofemoral fat mass (-0.03 [-0.05,-0.02; P = 1.4x10(-6) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and gamma-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (P-interaction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (P-interaction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.
  •  
36.
  • Scott, Robert A, et al. (författare)
  • No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels
  • 2012
  • Ingår i: Diabetes. - Alexandria, VA : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 61:5, s. 1291-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were associated with 2-h glucose (β = 0.06-0.12 mmol/allele, P ≤ 1.53 × 10(-7)), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene-lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions.
  •  
37.
  •  
38.
  • Almgren, Peter, et al. (författare)
  • Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study.
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 54, s. 2811-2819
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: To study the heritability and familiality of type 2 diabetes and related quantitative traits in families from the Botnia Study in Finland. METHODS: Heritability estimates for type 2 diabetes adjusted for sex, age and BMI are provided for different age groups of type 2 diabetes and for 34 clinical and metabolic traits in 5,810 individuals from 942 families using a variance component model (SOLAR). In addition, family means of these traits and their distribution across families are calculated. RESULTS: The strongest heritability for type 2 diabetes was seen in patients with age at onset 35-60 years (h (2) = 0.69). However, including patients with onset up to 75 years dropped the h (2) estimates to 0.31. Among quantitative traits, the highest h (2) estimates in all individuals and in non-diabetic individuals were seen for lean body mass (h (2) = 0.53-0.65), HDL-cholesterol (0.52-0.61) and suppression of NEFA during OGTT (0.63-0.76) followed by measures of insulin secretion (insulinogenic index [IG(30)] = 0.41-0.50) and insulin action (insulin sensitivity index [ISI] = 0.37-0.40). In contrast, physical activity showed rather low heritability (0.16-0.18), whereas smoking showed strong heritability (0.57-0.59). Family means of these traits differed two- to fivefold between families belonging to the lowest and highest quartile of the trait (p < 0.00001). CONCLUSIONS/INTERPRETATION: To detect stronger genetic effects in type 2 diabetes, it seems reasonable to restrict inclusion of patients to those with age at onset 35-60 years. Sequencing of families with extreme quantitative traits could be an important next step in the dissection of the genetics of type 2 diabetes.
  •  
39.
  • Almqvist, Catarina, et al. (författare)
  • LifeGene - A large prospective population-based study of global relevance
  • 2011
  • Ingår i: European Journal of Epidemiology. - Stockholm : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 26:1, s. 67-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying gene-environment interactions requires that the amount and quality of the lifestyle data is comparable to what is available for the corresponding genomic data. Sweden has several crucial prerequisites for comprehensive longitudinal biomedical research, such as the personal identity number, the universally available national health care system, continuously updated population and health registries and a scientifically motivated population. LifeGene builds on these strengths to bridge the gap between basic research and clinical applications with particular attention to populations, through a unique design in a research-friendly setting. LifeGene is designed both as a prospective cohort study and an infrastructure with repeated contacts of study participants approximately every 5 years. Index persons aged 18-45 years old will be recruited and invited to include their household members (partner and any children). A comprehensive questionnaire addressing cutting-edge research questions will be administered through the web with short follow-ups annually. Biosamples and physical measurements will also be collected at baseline, and re-administered every 5 years thereafter. Event-based sampling will be a key feature of LifeGene. The household-based design will give the opportunity to involve young couples prior to and during pregnancy, allowing for the first study of children born into cohort with complete pre-and perinatal data from both the mother and father. Questions and sampling schemes will be tailored to the participants' age and life events. The target of LifeGene is to enrol 500,000 Swedes and follow them longitudinally for at least 20 years.
  •  
40.
  • Andersson, Sofia A, et al. (författare)
  • Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes.
  • 2012
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 364:1-2, s. 36-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced insulin release has been linked to defect exocytosis in β-cells. However, whether expression of genes suggested to be involved in the exocytotic process (exocytotic genes) is altered in pancreatic islets from patients with type 2 diabetes (T2D), and correlate to insulin secretion, needs to be further investigated. Analysing expression levels of 23 exocytotic genes using microarray revealed reduced expression of five genes in human T2D islets (χ(2)=13.25; p<0.001). Gene expression of STX1A, SYT4, SYT7, SYT11, SYT13, SNAP25 and STXBP1 correlated negatively to in vivo measurements of HbA1c levels and positively to glucose stimulated insulin secretion (GSIS) in vitro in human islets. STX1A, SYT4 and SYT11 protein levels correspondingly decreased in human T2D islets. Moreover, silencing of SYT4 and SYT13 reduced GSIS in INS1-832/13 cells. Our data support that reduced expression of exocytotic genes contributes to impaired insulin secretion, and suggest decreased expression of these genes as part of T2D pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 31-40 av 76
Typ av publikation
tidskriftsartikel (65)
konferensbidrag (11)
Typ av innehåll
refereegranskat (64)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Groop, Leif (57)
McCarthy, Mark I (23)
Wareham, Nicholas J. (21)
Boehnke, Michael (21)
Ingelsson, Erik (20)
Tuomilehto, Jaakko (18)
visa fler...
Mohlke, Karen L (17)
Barroso, Ines (17)
Hofman, Albert (17)
Lyssenko, Valeriya (16)
Langenberg, Claudia (16)
Thorleifsson, Gudmar (16)
Thorsteinsdottir, Un ... (16)
Stefansson, Kari (16)
Groop, L. (15)
Lind, Lars (15)
Laakso, Markku (15)
van Duijn, Cornelia ... (15)
Kuusisto, Johanna (14)
Loos, Ruth J F (14)
Franks, Paul (13)
Rudan, Igor (13)
Isomaa, Bo (13)
Ripatti, Samuli (13)
Gyllensten, Ulf (13)
Luan, Jian'an (13)
Wilson, James F. (13)
Nilsson, Peter (12)
Salomaa, Veikko (12)
Campbell, Harry (12)
Tuomilehto, J. (12)
Mangino, Massimo (12)
Altshuler, David (12)
Khaw, Kay-Tee (11)
Langenberg, C. (11)
Tuomi, Tiinamaija (11)
Syvänen, Ann-Christi ... (11)
Hallmans, Göran (11)
Almgren, Peter (11)
Ladenvall, Claes (11)
Chasman, Daniel I. (11)
Abecasis, Goncalo R. (11)
Willemsen, Gonneke (11)
Gieger, Christian (11)
Boomsma, Dorret I. (11)
Jarvelin, Marjo-Riit ... (11)
Salomaa, V (11)
Pramstaller, Peter P ... (11)
Kathiresan, Sekar (11)
Rivadeneira, Fernand ... (11)
visa färre...
Lärosäte
Lunds universitet (58)
Karolinska Institutet (42)
Uppsala universitet (30)
Umeå universitet (22)
Göteborgs universitet (14)
Stockholms universitet (3)
visa fler...
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (76)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (61)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy