SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Krug A) srt2:(2015-2019)"

Search: WFRF:(Krug A) > (2015-2019)

  • Result 1-10 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Medema, M. H., et al. (author)
  • Minimum Information about a Biosynthetic Gene cluster
  • 2015
  • In: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 11:9, s. 625-631
  • Research review (peer-reviewed)abstract
    • A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
  •  
5.
  • Östling, Jörgen, et al. (author)
  • IL-17-high asthma with features of a psoriasis immunophenotype
  • 2019
  • In: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 144:5, s. 1198-1213
  • Journal article (peer-reviewed)abstract
    • Background: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required.Objective: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity.Methods: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17–high and IL-13–high asthma phenotypes.Results: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17–high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and β-defensin.Conclusion: The IL-17–high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.
  •  
6.
  •  
7.
  • Rosendahl, J, et al. (author)
  • Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis
  • 2018
  • In: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 67:10, s. 1855-1863
  • Journal article (peer-reviewed)abstract
    • Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus.Design1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used.ResultsWe replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk.ConclusionAn inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.
  •  
8.
  • Jevnikar, Z., et al. (author)
  • Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation
  • 2019
  • In: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 143:2, s. 577-590
  • Journal article (peer-reviewed)abstract
    • Background: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. Objective: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. Methods: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. Results: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1 beta, IL-8, and IL-1 beta. Conclusions: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
  •  
9.
  • Pelaz, B, et al. (author)
  • Diverse Applications of Nanomedicine
  • 2017
  • In: ACS nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 11:3, s. 2313-2381
  • Journal article (peer-reviewed)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view