SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Leuzy Antoine) ;spr:eng;srt2:(2021)"

Search: WFRF:(Leuzy Antoine) > English > (2021)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ashton, Nicholas J., et al. (author)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Journal article (peer-reviewed)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
2.
  • Boccardi, M., et al. (author)
  • The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update
  • 2021
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48
  • Journal article (peer-reviewed)abstract
    • Background The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. Methods We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. Results The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. Discussion This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.
  •  
3.
  • Cullen, Nicholas C., et al. (author)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • In: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Journal article (peer-reviewed)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
4.
  • Cullen, Nicholas C., et al. (author)
  • Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer’s Clinical Composite; R2 = 0.14, 95% CI [0.12–0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77–0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54–81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53–70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
  •  
5.
  • Hall, Sara, et al. (author)
  • Plasma Phospho-Tau Identifies Alzheimer's Co-Pathology in Patients with Lewy Body Disease
  • 2021
  • In: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 36:3, s. 767-771
  • Journal article (peer-reviewed)abstract
    • Background: Alzheimer's disease co-pathology is common in dementia with Lewy bodies and Parkinson's disease with dementia (Lewy body disease) and can reliably be detected with positron emission tomography (PET) or cerebrospinal fluid (CSF) biomarkers. Recently developed blood biomarkers are more accessible and less expensive alternatives. Objective: To investigate if plasma phospho-tau217 and phospho-tau181 can detect Alzheimer's pathology in Lewy body disease with dementia. Methods: In this cross-sectional study we investigated plasma phospho-tau217 and phospho-tau181 in 35 patients with Lewy body disease with dementia. Patients underwent tau-PET imaging (18F-RO948). Results: Plasma phospho-tau217 correlated with plasma phospho-tau181, CSF phospho-tau217 (rs = 0.68, P < 0.001), and negatively with CSF β-amyloid42/40 (rs = −0.52, P = 0.001). Plasma phospho-tau217 and phospho-tau181 correlated with tau-PET signal in the temporal cortex (rs > 0.56, P < 0.001) and predicted abnormal tau-PET status and β-amyloid status (area under the curve > 0.78 and > 0.81, respectively). Conclusion: Plasma phospho-tau might be a useful marker for Alzheimer's co-pathology in Lewy body disease with dementia.
  •  
6.
  • Johansson, Maurits, et al. (author)
  • Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer's disease
  • 2021
  • In: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Mild behavioral impairment (MBI) is suggested as risk marker for neurodegenerative diseases, such as Alzheimer's disease (AD). Recently, pathologic tau deposition in the brain has been shown closely related to clinical manifestations, such as cognitive deficits. Yet, associations between tau pathology and MBI have rarely been investigated. It is further debated if MBI precedes cognitive deficits in AD. Here, we explored potential mechanisms by which MBI is related to AD, this by studying associations between MBI and tau in preclinical AD. In all, 50 amyloid-beta -positive cognitively unimpaired subjects (part of the BioFINDER-2 study) underwent MBI-checklist (MBI-C) to assess MBI, and the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) delayed word recall (ADAS-DR) to assess episodic memory. Early tau pathology was determined using tau-PET ([F-18]RO948 retention in entorhinal cortex/hippocampus) and cerebrospinal fluid (CSF) P-tau(181). Regression models were used to test for associations. We found that higher tau-PET signal in the entorhinal cortex/hippocampus and CSF P-tau(181) levels were associated with higher MBI-C scores (beta =0.010, SE=0.003, p=0.003 and beta =1.263, SE=0.446, p=0.007, respectively). When MBI-C and ADAS-DR were entered together in the regression models, tau-PET (beta =0.009, p=0.009) and CSF P-tau(181) (beta =0.408, p=0.006) were predicted by MBI-C, but not ADAS-DR. We conclude that in preclinical AD, MBI is associated with tau independently from memory deficits. This denotes MBI as an important early clinical manifestation related to tau pathology in AD.
  •  
7.
  • Leuzy, Antoine, et al. (author)
  • A multicenter comparison of [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis
  • 2021
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48:7, s. 2295-2305
  • Journal article (peer-reviewed)abstract
    • Purpose: This study aims to determine whether comparable target regions of interest (ROIs) and cut-offs can be used across [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau positron emission tomography (PET) tracers for differential diagnosis of Alzheimer’s disease (AD) dementia vs either cognitively unimpaired (CU) individuals or non-AD neurodegenerative diseases. Methods: A total of 1755 participants underwent tau PET using either [18F]flortaucipir (n = 975), [18F]RO948 (n = 493), or [18F]MK6240 (n = 287). SUVR values were calculated across four theory-driven ROIs and several tracer-specific data-driven (hierarchical clustering) regions of interest (ROIs). Diagnostic performance and cut-offs for ROIs were determined using receiver operating characteristic analyses and the Youden index, respectively. Results: Comparable diagnostic performance (area under the receiver operating characteristic curve [AUC]) was observed between theory- and data-driven ROIs. The theory-defined temporal meta-ROI generally performed very well for all three tracers (AUCs: 0.926–0.996). An SUVR value of approximately 1.35 was a common threshold when using this ROI. Conclusion: The temporal meta-ROI can be used for differential diagnosis of dementia patients with [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET with high accuracy, and that using very similar cut-offs of around 1.35 SUVR. This ROI/SUVR cut-off can also be applied across tracers to define tau positivity.
  •  
8.
  • Leuzy, Antoine, et al. (author)
  • Comparing the Clinical Utility and Diagnostic Performance of Cerebrospinal Fluid P-Tau181, P-Tau217 and P-Tau231 Assays
  • 2021
  • In: Neurology. - 1526-632X. ; 97:17, s. 1681-1694
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND OBJECTIVES: Phosphorylated tau (P-tau) in cerebrospinal fluid (CSF) is considered an important biomarker in Alzheimer's disease (AD) and has been incorporated in recent diagnostic criteria. Several variants exist, including P-tau at threonines 181 (P-tau181), 217 (P-tau217) and 231 (P-tau231). However, no studies have compared their diagnostic performance or association to amyloid-β (Aβ) and Tau positron emission tomography (PET). Understanding which P-tau variant to use remains an important yet answered question. We aimed to compare the diagnostic accuracy of P-tau181, P-tau217 and P-tau231 in CSF for AD and their association with Aβ and Tau-PET.METHODS: 629 subjects from the Swedish BioFINDER-2 study were included (cognitively unimpaired, n=334; Aβ-positive mild cognitive impairment, n=84; AD dementia, n=119; and non-AD disorders, n=92). In addition to P-tau181 and P-tau217 measured using assays with the same detector antibodies from Eli Lilly (P-tau181Lilly, P-tau217Lilly) and P-tau231, we also included P-tau181 measurements from two commonly used assays (Innotest and Elecsys).RESULTS: Though all P-tau variants increased across the AD continuum, P-tau217Lilly showed the greatest dynamic range (13-fold-increase vs 1.9-5.4-fold-increase for other P-tau variants for AD dementia vs non-AD). P-tau217Lilly showed stronger correlations with Aβ- and Tau-PET (P<0.0001). P-tau217Lilly exhibited higher accuracy than other P-tau variants for separating AD dementia from non-AD (AUC, 0.991vs 0.906-0.982, P<0.0001) and for identifying Aβ- (AUC, 0.951 vs 0.816-0.924, P<0.0001) and Tau-PET positivity (AUC, 0.957 vs 0.836-0.938, P<0.0001). Finally, P-tau181Lilly generally performed better than the other P-tau181 assays, (e.g., AD dementia vs non-AD, AUC, 0.976 vs 0.923, P<0.0001).DISCUSSION: CSF P-tau217Lilly seem to be more useful than other included P-tau assays in the work-up of AD. Varied results across P-tau181 assays also highlights the importance of anti-tau antibodies for biomarker performance.CLASSIFICATION OF EVIDENCE: This study provides class II evidence that phosphorylated tau at threonine 217 provides higher diagnostic accuracy for diagnosis of AD dementia than P-tau at threonine 181 or 231.
  •  
9.
  • Leuzy, Antoine, et al. (author)
  • Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer's disease
  • 2021
  • In: Current Opinion in Neurology. - 1473-6551. ; 34:2, s. 266-274
  • Journal article (peer-reviewed)abstract
    • PURPOSE OF REVIEW: This review provides a concise overview of recent advances in cerebrospinal fluid (CSF) and blood-based biomarkers of Alzheimer's disease lesions. RECENT FINDINGS: Important recent advances for CSF Alzheimer's disease biomarkers include the introduction of fully automated assays, the development and implementation of certified reference materials for CSF Aβ42 and a unified protocol for handling of samples, which all support reliability and availability of CSF Alzheimer's disease biomarkers. Aβ deposition can be detected using Aβ42/Aβ40 ratio in both CSF and plasma, though a much more modest change is seen in plasma. Tau aggregation can be detected using phosphorylated tau (P-tau) at threonine 181 and 217 in CSF, with similar accuracy in plasma. Neurofilament light (NfL) be measured in CSF and shows similar diagnostic accuracy in plasma. Though total tau (T-tau) can also be measured in plasma, this measure is of limited clinical relevance for Alzheimer's disease in its current immunoassay format. SUMMARY: Alzheimer's disease biomarkers, including Aβ, P-tau and NfL can now be reliably measured in both CSF and blood. Plasma-based measures of P-tau show particular promise, with potential applications in both clinical practice and in clinical trials.
  •  
10.
  • Ossenkoppele, Rik, et al. (author)
  • Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease : A Head-to-Head Comparison against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging
  • 2021
  • In: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 961-971
  • Journal article (peer-reviewed)abstract
    • Importance: Tau positron emission tomography (PET) tracers have proven useful for the differential diagnosis of dementia, but their utility for predicting cognitive change is unclear. Objective: To examine the prognostic accuracy of baseline fluorine 18 (18F)-flortaucipir and [18F]RO948 (tau) PET in individuals across the Alzheimer disease (AD) clinical spectrum and to perform a head-to-head comparison against established magnetic resonance imaging (MRI) and amyloid PET markers. Design, Setting, and Participants: This prognostic study collected data from 8 cohorts in South Korea, Sweden, and the US from June 1, 2014, to February 28, 2021, with a mean (SD) follow-up of 1.9 (0.8) years. A total of 1431 participants were recruited from memory clinics, clinical trials, or cohort studies; 673 were cognitively unimpaired (CU group; 253 [37.6%] positive for amyloid-β [Aβ]), 443 had mild cognitive impairment (MCI group; 271 [61.2%] positive for Aβ), and 315 had a clinical diagnosis of AD dementia (315 [100%] positive for Aβ). Exposures: [18F]Flortaucipir PET in the discovery cohort (n = 1135) or [18F]RO948 PET in the replication cohort (n = 296), T1-weighted MRI (n = 1431), and amyloid PET (n = 1329) at baseline and repeated Mini-Mental State Examination (MMSE) evaluation. Main Outcomes and Measures: Baseline [18F]flortaucipir/[18F]RO948 PET retention within a temporal region of interest, MRI-based AD-signature cortical thickness, and amyloid PET Centiloids were used to predict changes in MMSE using linear mixed-effects models adjusted for age, sex, education, and cohort. Mediation/interaction analyses tested whether associations between baseline tau PET and cognitive change were mediated by baseline MRI measures and whether age, sex, and APOE genotype modified these associations. Results: Among 1431 participants, the mean (SD) age was 71.2 (8.8) years; 751 (52.5%) were male. Findings for [18F]flortaucipir PET predicted longitudinal changes in MMSE, and effect sizes were stronger than for AD-signature cortical thickness and amyloid PET across all participants (R2, 0.35 [tau PET] vs 0.24 [MRI] vs 0.17 [amyloid PET]; P <.001, bootstrapped for difference) in the Aβ-positive MCI group (R2, 0.25 [tau PET] vs 0.15 [MRI] vs 0.07 [amyloid PET]; P <.001, bootstrapped for difference) and in the Aβ-positive CU group (R2, 0.16 [tau PET] vs 0.08 [MRI] vs 0.08 [amyloid PET]; P <.001, bootstrapped for difference). These findings were replicated in the [18F]RO948 PET cohort. MRI mediated the association between [18F]flortaucipir PET and MMSE in the groups with AD dementia (33.4% [95% CI, 15.5%-60.0%] of the total effect) and Aβ-positive MCI (13.6% [95% CI, 0.0%-28.0%] of the total effect), but not the Aβ-positive CU group (3.7% [95% CI, -17.5% to 39.0%]; P =.71). Age (t = -2.28; P =.02), but not sex (t = 0.92; P =.36) or APOE genotype (t = 1.06; P =.29) modified the association between baseline [18F]flortaucipir PET and cognitive change, such that older individuals showed faster cognitive decline at similar tau PET levels. Conclusions and Relevance: The findings of this prognostic study suggest that tau PET is a promising tool for predicting cognitive change that is superior to amyloid PET and MRI and may support the prognostic process in preclinical and prodromal stages of AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view