SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liberles David A.) srt2:(2010-2014)"

Sökning: WFRF:(Liberles David A.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liberles, David A., et al. (författare)
  • The interface of protein structure, protein biophysics, and molecular evolution
  • 2012
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 21:6, s. 769-785
  • Forskningsöversikt (refereegranskat)abstract
    • The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.
  •  
2.
  • Konrad, Anke, et al. (författare)
  • The evolution of catalytic residues and enzyme mechanism within the bacterial nucleoside phosphorylase superfamily 1
  • 2012
  • Ingår i: Gene. - : Elsevier BV. - 1879-0038 .- 0378-1119. ; 510:2, s. 154-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleoside phosphorylases are essential for the salvage and catabolism of nucleotides in bacteria and other organisms, and members of this enzyme superfamily have been of interest for the development of antimicrobial and cancer therapies. The nucleotide phosphorylase superfamily 1 encompasses a number of different enzymes which share a general superfold and catalytic mechanism, while they differ in the nature of the nucleophiles used and in the nature of characteristic active site residues. Recently, one subfamily, the uridine phosphorylases, has been subdivided into two types which differ with respect to the mechanism of transition state stabilization, as dictated by differences in critical amino acid residues. Little is known about the phylogenetic distribution and relationship of the two different types, as well as the relationship to other NP-1 superfamily members. Here comparative genomic analysis illustrates that UP-Is and UP-2s fall into monophyletic groups and are biased with respect to species representation. UP-1 evolved in Gram negative bacteria, while Gram positive species tend to predominantly contain UP-2. PNP (a sister clade to all UPs) contains both Gram positive and Gram negative species. The findings imply that the nucleoside phosphorylase superfamily I evolved through a series of three important duplications, leading to the separate, monophyletic enzyme families, coupled to individual lateral transfer events. Extensive horizontal transfer explains the occurrence of unexpected uridine phosphorylases in some genomes. This study provides a basis for understanding the evolution of uridine and purine nucleoside phosphorylases with respect to DNA/RNA metabolism and with potential utility in the design of antimicrobial and anti-tumor drugs. (C) 2012 Elsevier B.V. All rights reserved.
  •  
3.
  • Konrad, Anke, et al. (författare)
  • The global distribution and evolution of deoxyribonucleoside kinases in bacteria
  • 2012
  • Ingår i: Gene. - : Elsevier BV. - 1879-0038 .- 0378-1119. ; 492:1, s. 117-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Deoxyribonucleoside kinases (dNKs) are important to DNA metabolism, especially in environments where nucleosides are freely available to be absorbed and used for the salvage pathway. Little has previously been known about the complement of dNKs in different bacterial genomes. However, it was believed that Gram-negative bacteria had a single dNK, while Gram-positive bacteria possessed several. An analysis of 992 fully sequenced bacterial genomes, including both Gram-positive and Gram-negative organisms, was conducted to investigate the phylogenetic relationship of all TK1-like and non-TK1-like dNKs. It was illustrated that both gene families evolved through a number of duplications and horizontal gene transfers, leading to the presence of multiple dNKs in different types of bacteria. The findings of this study provide a backbone for further studies into the evolution of the interplay between the de novo and salvage pathways in DNA synthesis with respect to environmental availability of deoxyribonucleosides and metabolic processes generating the provisions of different dNTPs. (C) 2011 Elsevier B.V. All rights reserved.
  •  
4.
  • Konrad, Anke, et al. (författare)
  • The Phylogenetic Distribution and Evolution of Enzymes Within the Thymidine Kinase 2-like Gene Family in Metazoa
  • 2014
  • Ingår i: Journal of Molecular Evolution. - : Springer Science and Business Media LLC. - 0022-2844 .- 1432-1432. ; 78:3-4, s. 202-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.
  •  
5.
  • Tinta, Tinkara, et al. (författare)
  • Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine.
  • 2012
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968 .- 0378-1097. ; 331:2, s. 120-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Deoxyribonucleoside kinases (dNKs) are essential in the mammalian cell but their 'importance' in bacteria, especially aquatic ones, is less clear. We studied two aquatic bacteria, Gram-negative Flavobacterium psychrophilum JIP02/86 and Polaribacter sp. MED152, for their ability to salvage deoxyribonucleosides (dNs). Both had a Gram-positive-type thymidine kinase (TK1), which could phosphorylate thymidine, and one non-TK1 dNK, which could efficiently phosphorylate deoxyadenosine and slightly also deoxycytosine. Surprisingly, the four tested dNKs could not phosphorylate deoxyguanosine, and apparently, these two bacteria are missing this activity. When tens of available aquatic bacteria genomes were examined for the presence of dNKs, a majority had at least a TK1-like gene, but several lacked any dNKs. Apparently, among aquatic bacteria, the role of the dN salvage varies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy