SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Chunyu) srt2:(2019)"

Sökning: WFRF:(Liu Chunyu) > (2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ma, Jiantao, et al. (författare)
  • A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease
  • 2019
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 68:5, s. 1073-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10(-6)) with replication at Bonferroni-corrected P < 8.6 x 10(-4). Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10(-4)). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.
  •  
2.
  • Mueller, Christian P., et al. (författare)
  • The Cortical Neuroimmune Regulator TANK Affects Emotional Processing and Enhances Alcohol Drinking : A Translational Study
  • 2019
  • Ingår i: Cerebral Cortex. - : OXFORD UNIV PRESS INC. - 1047-3211 .- 1460-2199. ; 29:4, s. 1736-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol abuse is a major public health problem worldwide. Understanding the molecular mechanisms that control regular drinking may help to reduce hazards of alcohol consumption. While immunological mechanisms have been related to alcohol drinking, most studies reported changes in immune function that are secondary to alcohol use. In this report, we analyse how the gene "TRAF family member-associated NF-kappa B activator" (TANK) affects alcohol drinking behavior. Based on our recent discovery in a large GWAS dataset that suggested an association of TANK, SNP rs197273, with alcohol drinking, we report that SNP rs197273 in TANK is associated both with gene expression (P = 1.16 x 10(-19)) and regional methylation (P = 5.90 x 10(-25)). A tank knock out mouse model suggests a role of TANK in alcohol drinking, anxiety-related behavior, as well as alcohol exposure induced activation of insular cortex NF-kappa B. Functional and structural neuroimaging studies among up to 1896 adolescents reveal that TANK is involved in the control of brain activity in areas of aversive interoceptive processing, including the insular cortex, but not in areas related to reinforcement, reward processing or impulsiveness. Our findings suggest that the cortical neuroimmune regulator TANK is associated with enhanced aversive emotional processing that better protects from the establishment of alcohol drinking behavior.
  •  
3.
  • Cardona, Alexia, et al. (författare)
  • Epigenome-wide association study of incident type 2 diabetes in a British population : EPIC-Norfolk study
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:12, s. 2315-2326
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the populationbased European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesityrelated pathways acting before the collection of baseline samples.We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.
  •  
4.
  • Huan, Tianxiao, et al. (författare)
  • Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-associated variants from genome-wide association studies (GWAS) may illuminate functional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7 million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Independent replication is performed in 1347 participants from two studies. By linking cis-meQTL variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional regulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA methylation involvement in human diseases.
  •  
5.
  • Li, Zhiqi, et al. (författare)
  • Efficient perovskite solar cells enabled by ion-modulated grain boundary passivation with a fill factor exceeding 84%
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 7:39, s. 22359-22365
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkali metal cation modulation toward high-electronic-quality perovskite films requires strict control over trap densities in the devices. By introducing tailor-made potassium cation (K+)-functionalized carbon nanodots (CNDs@K) into the perovskite precursor solution, we succeeded in defect passivation and crystallization control of the perovskite film. X-ray diffraction indicated that the binding effect of carbon dots confined the K+ ions in the grain boundary and prevented excessive cations from occupying interstitial sites, thereby reducing the microstrain of the polycrystalline film. Consequently, the synergistic effect of the tailored crystal size and suppressed grain boundary defects could reduce the charge trap density, facilitate charge generation, and lengthen the carrier lifetime, leading to a boosted efficiency of 21.01% with a high fill factor of 84%. This performance is among the best reported for carbon dot-doped PSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy