SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marschall Hanns Ulrich) srt2:(2020-2022)"

Sökning: WFRF:(Marschall Hanns Ulrich) > (2020-2022)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel-Khalik, Jonas, et al. (författare)
  • Bile acid biosynthesis in Smith-Lemli-Opitz syndrome bypassing cholesterol: Potential importance of pathway intermediates.
  • 2021
  • Ingår i: The Journal of steroid biochemistry and molecular biology. - : Elsevier BV. - 1879-1220 .- 0960-0760. ; 206
  • Tidskriftsartikel (refereegranskat)abstract
    • Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7β-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3β-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7β-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7β-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.
  •  
2.
  • Bellafante, E., et al. (författare)
  • Maternal glucose homeostasis is impaired in mouse models of gestational cholestasis
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Women with intrahepatic cholestasis of pregnancy (ICP), a disorder characterised by raised serum bile acids, are at increased risk of developing gestational diabetes mellitus and have impaired glucose tolerance whilst cholestatic. FXR and TGR5 are modulators of glucose metabolism, and FXR activity is reduced in normal pregnancy, and further in ICP. We aimed to investigate the role of raised serum bile acids, FXR and TGR5 in gestational glucose metabolism using mouse models. Cholic acid feeding resulted in reduced pancreatic beta-cell proliferation and increased apoptosis in pregnancy, without altering insulin sensitivity, suggesting that raised bile acids affect beta-cell mass but are insufficient to impair glucose tolerance. Conversely, pregnant Fxr(-/-) and Tgr5(-/-) mice are glucose intolerant and have reduced insulin secretion in response to glucose challenge, and Fxr(-/-) mice are also insulin resistant. Furthermore, fecal bile acids are reduced in pregnant Fxr(-/-) mice. Lithocholic acid and deoxycholic acid, the principal ligands for TGR5, are decreased in particular. Therefore, we propose that raised serum bile acids and reduced FXR and TGR5 activity contribute to the altered glucose metabolism observed in ICP.
  •  
3.
  • Borges Manna, Luiza, et al. (författare)
  • Ursodeoxycholic acid improves feto-placental and offspring metabolic outcomes in hypercholanemic pregnancy.
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Perturbations in the intrauterine environment can result in lifelong consequences for metabolic health during postnatal life. Intrahepatic cholestasis of pregnancy (ICP) can predispose offspring to metabolic disease in adulthood, likely due to a combination of the effects of increased bile acids, maternal dyslipidemia and deranged maternal and fetal lipid homeostasis. Whereas ursodeoxycholic acid (UDCA) is a commonly used treatment for ICP, no studies have yet addressed whether it can also prevent the metabolic effects of ICP in the offspring and fetoplacental unit. We therefore analyzed the lipid profile of fetal serum from untreated ICP, UDCA-treated ICP and uncomplicated pregnancies and found that UDCA ameliorates ICP-associated fetal dyslipidemia. We then investigated the effects of UDCA in a mouse model of hypercholanemic pregnancy and showed that it induces hepatoprotective mechanisms in the fetal liver, reduces hepatic fatty acid synthase (Fas) expression and improves glucose tolerance in the adult offspring. Finally, we showed that ICP leads to epigenetic changes in pathways of relevance to the offspring phenotype. We therefore conclude that UDCA can be used as an intervention in pregnancy to reduce features of metabolic disease in the offspring of hypercholanemic mothers.
  •  
4.
  • Braadland, P. R., et al. (författare)
  • Suppression of bile acid synthesis as a tipping point in the disease course of primary sclerosing cholangitis
  • 2022
  • Ingår i: Jhep Reports. - : Elsevier BV. - 2589-5559. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Farnesoid X receptor (FXR) agonists and fibroblast growth factor 19 (FGF19) analogues suppress bile acid synthesis and are being investigated for their potential therapeutic efficacy in cholestatic liver diseases. We investigated whether bile acid synthesis associated with outcomes in 2 independent populations of people with primary sclerosing cholangitis (PSC) not receiving such therapy.Methods: Concentrations of individual bile acids and 7a-hydroxy-4-cholesten-3-one (C4) were measured in blood samples from 330 patients with PSC attending tertiary care hospitals in the discovery and validation cohorts and from 100 healthy donors. We used a predefined multivariable Cox proportional hazards model to evaluate the prognostic value of C4 to predict liver transplantation-free survival and evaluated its performance in the validation cohort. Results: The bile acid synthesis marker C4 was negatively associated with total bile acids. Patients with fully suppressed bile acid synthesis had strongly elevated total bile acids and short liver transplantation-free survival. In multivariable models, a 50% reduction in C4 corresponded to increased hazards for liver transplantation or death in both the discovery (adjusted hazard ratio [HR] = 1.24, 95% CI 1.06-1.43) and validation (adjusted HR = 1.23, 95% CI 1.03-1.47) cohorts. Adding C4 to established risk scores added value to predict future events, and predicted survival probabilities were well calibrated externally. There was no discernible impact of ursodeoxycholic acid treatment on bile acid synthesis.Conclusions: Bile acid accumulation-associated suppression of bile acid synthesis was apparent in patients with advanced PSC and associated with reduced transplantation-free survival. In a subset of the patients, bile acid synthesis was likely suppressed beyond a tipping point at which any further pharmacological suppression may be futile. Implications for patient stratification and inclusion criteria for clinical trials in PSC warrant further investigation.Lay summary: We show, by measuring the level of the metabolite C4 in the blood from patients with primary sclerosing cholangitis (PSC), that low production of bile acids in the liver predicts a more rapid progression to severe disease. Many people with PSC appear to have fully suppressed bile acid production, and both established and new drugs that aim to reduce bile acid production may therefore be futile for them. We propose C4 as a test to find those likely to respond to these treatments.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
5.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease.
  • 2020
  • Ingår i: JCI insight. - : American Society for Clinical Investigation. - 2379-3708. ; 5:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
  •  
6.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Silencing of STE20-type kinase STK25 in human aortic endothelial and smooth muscle cells is atheroprotective
  • 2022
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies highlight the importance of lipotoxic damage in aortic cells as the major pathogenetic contributor to atherosclerotic disease. Since the STE20-type kinase STK25 has been shown to exacerbate ectopic lipid storage and associated cell injury in several metabolic organs, we here investigate its role in the main cell types of vasculature. We depleted STK25 by small interfering RNA in human aortic endothelial and smooth muscle cells exposed to oleic acid and oxidized LDL. In both cell types, the silencing of STK25 reduces lipid accumulation and suppresses activation of inflammatory and fibrotic pathways as well as lowering oxidative and endoplasmic reticulum stress. Notably, in smooth muscle cells, STK25 inactivation hinders the shift from a contractile to a synthetic phenotype. Together, we provide several lines of evidence that antagonizing STK25 signaling in human aortic endothelial and smooth muscle cells is atheroprotective, highlighting this kinase as a new potential therapeutic target for atherosclerotic disease.
  •  
7.
  • Caputo, Mara, et al. (författare)
  • Silencing of STE20-type kinase MST3 in mice with antisense oligonucleotide treatment ameliorates diet-induced nonalcoholic fatty liver disease
  • 2021
  • Ingår i: FASEB Journal. - 0892-6638. ; 35:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.
  •  
8.
  • Caputo, Mara, et al. (författare)
  • STE20-Type Protein Kinase MST4 Controls NAFLD Progression by Regulating Lipid Droplet Dynamics and Metabolic Stress in Hepatocytes
  • 2021
  • Ingår i: Hepatology Communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 5:7, s. 1183-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating beta-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.
  •  
9.
  • Casselbrant, Anna, 1970, et al. (författare)
  • Morphological Adaptation in the Jejunal Mucosa after Iso-Caloric High-Fat versus High-Carbohydrate Diets in Healthy Volunteers: Data from a Randomized Crossover Study
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: The conditions for jejunal glucose absorption in healthy subjects have not been thoroughly studied. In this study we investigated differences in the jejunal villi enlargement factor, as well as ultrastructural aspects of the surface enterocytes and mitochondria, comparing 2 weeks of high-carbohydrate (HCD) versus high-fat diets (HFD). We also measured the ketogenesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) in relation to jejunal mitochondria. Methods: A single-centre, randomized, unblinded crossover study in 15 healthy volunteers ingesting strictly controlled equicaloric diets (either HCD or HFD), with 60% energy from the respective source. An enteroscopy was carried out after 2 weeks of each diet and jejunal mucosal biopsies were acquired. Conventional histology, immunofluorescent staining, transmission electron microscopy and confocal microscopy were used. Results: The villi did not demonstrate any change in the epithelial enlargement factor. Despite an increased mitosis, there were no changes in apoptotic indices. However, the ultrastructural analysis demonstrated a significant increase in the enlargement factor at the bases of the villi. The mitochondria demonstrated increased amounts of cristae after the HFD. The confocal microscopy revealed increased HMGCS2 per mitochondrial marker at the top of the villi after the HFD compared to the HCD. Conclusion: There is a morphometric adaption in the jejunal mucosa following the 2-week diets, not only on a histological level, but rather on the ultrastructural level. This study supports the notion that mitochondrial HMGCS2 is regulated by the fat content of the diet and is involved in the expression of monosaccharide transporters.
  •  
10.
  • Cederborg, Anna, 1976, et al. (författare)
  • Renal function after liver transplantation: Real-world experience with basiliximab induction and delayed reduced-dose tacrolimus
  • 2022
  • Ingår i: Digestive and Liver Disease. - : Elsevier BV. - 1590-8658. ; 54:8, s. 1076-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Routine use of delayed reduced-dose calcineurin-inhibitor treatment with induction immunosuppression in liver transplantation to minimize post-operative kidney injury is still scarce. Aim: To evaluate real-world experience of basiliximab induction with delayed reduced-dose tacrolimus. Methods: In a retrospective cohort study, kidney function was evaluated pre- and postoperatively by measured glomerular filtration rate (mGFR). Adult patients undergoing liver transplantation between 2000 and 2017 were divided into a conventional treatment group (immediate-introduction of tacrolimus, target trough levels 10–15 ng/mL, and corticosteroids, n = 203) and a revised treatment group (basiliximab induction, reduced-dose tacrolimus, target through levels 5–8 ng/mL, delayed until day three, and mycophenolate mofetil 2000 mg/day, n = 343). Results: Mean mGFR was similar between groups at wait-listing (85.3 vs 84.1 ml/min/1.73m², p = 0.60), but higher in the revised treatment group at 3 (56.8 vs 63.4 ml/min/1.73m², p = 0.004) and 12 months post-transplant (60.9 vs 69.7 ml/min/1.73m², p<0.001); this difference remained after correcting for multiple confounders and was independent of pre-transplant mGFR. In the revised treatment group, biopsy proven acute rejection rate was lower (38% vs. 21%, p<0.001), and graft-survival better (p = 0.01). Conclusion: Basiliximab induction with delayed reduced-dose tacrolimus is associated with less kidney injury when compared to standard-dose tacrolimus, without increased risk of rejection, graft loss or death. © 2021
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (40)
Typ av innehåll
refereegranskat (40)
Författare/redaktör
Marschall, Hanns-Ulr ... (40)
Ståhlman, Marcus, 19 ... (9)
Cansby, Emmelie, 198 ... (7)
Mahlapuu, Margit, 19 ... (7)
Williamson, C (6)
Wahlström, Annika, 1 ... (6)
visa fler...
Williamson, Catherin ... (5)
Borén, Jan, 1963 (5)
Kurhe, Yeshwant (4)
Trautwein, C (4)
Ovadia, C. (3)
Chambers, J. (3)
Dixon, P. H. (3)
Wallenius, Ville, 19 ... (3)
Xia, Ying (3)
Rorsman, Fredrik, Do ... (3)
Fändriks, Lars, 1956 (3)
Molinaro, Antonio (3)
Henricsson, Marcus, ... (3)
Casselbrant, Anna, 1 ... (3)
Fan, H. M. (3)
Schneider, K. M. (3)
Bergquist, Annika (2)
Wagner, M. (2)
Papacleovoulou, Geor ... (2)
Lovgren-Sandblom, A. (2)
Syngelaki, A. (2)
Seed, P. T. (2)
Trauner, M (2)
Sihlbom, Carina, 197 ... (2)
Soomets, Ursel (2)
Scharnagl, H. (2)
Jones, P (2)
Trauner, Michael (2)
Werner, Mårten (2)
Nair, Syam (2)
Jansen, Eugene (2)
Bluher, M. (2)
Bergh, Per-Olof (2)
Fuchs, C. D. (2)
Bellafante, E. (2)
McIlvride, S. (2)
Levy, Cynthia (2)
Schramm, Christoph (2)
Karlsen, T. H. (2)
Hov, J. R. (2)
Chapman, Roger W (2)
Pataia, Vanessa (2)
McIlvride, Saraid (2)
Dixon, Peter (2)
visa färre...
Lärosäte
Göteborgs universitet (40)
Karolinska Institutet (14)
Uppsala universitet (3)
Umeå universitet (2)
Örebro universitet (2)
Lunds universitet (2)
visa fler...
Chalmers tekniska högskola (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (34)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy