SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) srt2:(2015-2019);srt2:(2016)"

Sökning: WFRF:(Matic Aleksandar 1968) > (2015-2019) > (2016)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilera Medina, Luis, 1983, et al. (författare)
  • Enhanced low-temperature ionic conductivity via different Li+ solvated clusters in organic solvent/ionic liquid mixed electrolytes
  • 2016
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 18:36, s. 25458-25464
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate Li+ coordination in mixed electrolytes based on ionic liquids (ILs) and organic solvents and its relation with the macroscopic properties such as phase behaviour and ionic conductivity. Using Raman spectroscopy we determine the solvation shell around Li+ in mixtures formed by the IL N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide, the organic solvents ethylene carbonate and dimethyl carbonate (EC : DMC 1 : 1), and the salt LiTFSI. We find that the organic solvent molecules preferentially solvate Li+ as long as there are enough of them. Our results are consistent with a model where Li(EC)(3)(DMC)(1) and Li(EC)(2)(DMC)(2) are the main complexes formed by the organic solvent molecules and where TFSI- mainly participates in Li(TFSI)(2)(-) clusters. As the amount of organic solvent is increased, the number of TFSI- around Li+ rapidly decreases showing a higher affinity of the organic solvents to solvate Li+. The changes in the local configurations are also reflected in the ionic conductivity and the phase behaviour. The formation of larger clusters leads to a decrease in the conductivity, whereas the presence of several different clusters at intermediate compositions effectively hinders crystallization at low temperatures. The result is an enhanced low-temperature ionic conductivity in comparison with the pure IL or organic solvent electrolytes.
  •  
2.
  • Iselau, Frida, 1979, et al. (författare)
  • Competitive adsorption of amylopectin and amylose on cationic nanoparticles: a study on the aggregation mechanism
  • 2016
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 12:14, s. 3388-3397
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate the interactions between cationic nanoparticles and anionic starch, where the starch was composed of 20 wt% of amylose, a linear polymer, and 80 wt% of amylopectin, a branched polymer. The mechanism of aggregation was investigated by scattering techniques. It was found that the cationic particles formed large aggregates with the starch as a result of selective adsorption of the amylopectin. Amylose did not participate significantly in the aggregate formation even when the charge ratio of starch to particles was <1. For starch to particle ratio 41 stabilization was recovered mostly due to the large hindrance brought about by the highly branched amylopectin. This results in a shift of the stabilization mechanism from electrostatic to electrosteric. The internal structure of the aggregates was composed of primary particles with starch coils adsorbed on the surface. This information supports the proposed aggregation mechanism, which is based on adsorption of the negatively charged starch in patches on the positively charged nanoparticles causing attractive interaction between the particles.
  •  
3.
  • Iselau, Frida, 1979, et al. (författare)
  • Formation and relaxation kinetics of starch-particle complexes
  • 2016
  • Ingår i: Soft Matter. - 1744-6848 .- 1744-683X. ; 12:47, s. 9509-9519
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation and relaxation kinetics of starch-particle complexes were investigated in this study. The combination of cationic nanoparticles in suspension and anionic starch in solution gave rise to aggregate formation which was studied by dynamic light scattering, revealing the initial adsorption of the starch molecules on the particle surface. By examining the stability ratio, W, it was found that even in the most destabilized state, i.e. at charge neutralization, the starch chains had induced steric stabilization to the system. At higher particle and starch concentrations relaxation of the aggregates could be seen, as monitored by a decrease in turbidity with time. This relaxation was evaluated by fitting the data to the Kohlrausch-Williams-Watts function. It was found that irrespective of the starch to particle charge ratio the relaxation time was similar. Moreover, a molecular weight dependence on the relaxation time was found, as well as a more pronounced initial aggregated state for the higher molecular weight starch. This initial aggregate state could be due to bridging flocculation. With time, as the starch chains have relaxed into a final conformation on the particle surface, bridging will be less important and is gradually replaced by patches that will cause patchwise flocculation. After an equilibration time no molecular weight dependence on aggregation could be seen, which confirms the patchwise flocculation mechanism.
  •  
4.
  • Larsson Wexell, Cecilia, 1965, et al. (författare)
  • Electropolished titanium implants with a mirror-like surface support osseointegration and bone remodelling
  • 2016
  • Ingår i: Advances in Materials Science and Engineering. - : Hindawi Limited. - 1687-8434 .- 1687-8442.
  • Tidskriftsartikel (refereegranskat)abstract
    • This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.
  •  
5.
  • Nitze, Florian, 1981, et al. (författare)
  • A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of "no battery without binder" and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm(2) after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.
  •  
6.
  • Nitze, Florian, 1981, et al. (författare)
  • Sulfur-doped ordered mesoporous carbons: A stability-improving sulfur host for lithium-sulfur battery cathodes
  • 2016
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 317, s. 112-119
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on sulfur-functionalized ordered mesoporous carbons aimed for lithium-sulfur battery electrode applications with improved charge capacity retention. The carbons were obtained by a hard-template strategy using a mixture of furfuryl alcohol and furfuryl mercaptan. For the application as electrode material in lithium-sulfur batteries, the carbons were additionally loaded with sulfur following a traditional melt-diffusion approach. It was found that the sulfur interacts stronger with the sulfur-functionalized carbon matrix than with the non-functionalized material. Electrodes showed very high capacity in the second discharge-charge cycle amounting to approximately 1500, 1200 and 1400 mAh/g (sulfur) for carbon materials with no, medium and high degrees of sulfur functionalization, respectively. More importantly, the sulfur-functionalization of the carbon was found to increase the capacity retention after 50 discharge-charge cycles by 8 and 5% for the carbons with medium and high degrees of sulfur-functionalization, respectively, compared to carbon with no sulfur-functionalization. We attribute this significant improvement to the presence of covalently bound sulfur groups at the internal surface of the functionalized carbon providing efficient anchoring sites for catenation to the sulfur loaded into the pores of the carbons and provide experimental support for this in the form of results from cyclic voltammetry and X-ray photoelectron spectroscopy.
  •  
7.
  • Phan Xuan, Tuan, 1984, et al. (författare)
  • Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts
  • 2016
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 23:6, s. 3653-3663
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural anisotropic building-blocks such as cellulose nanocrystals (CNCs) have attracted considerable attention due to their biodegradability and nanometer-size. In this work the colloidal behavior of CNCs, obtained from sulfuric acid hydrolysis of microcrystalline cellulose, has been studied in presence of salts of different valences. The influence on the colloidal stability and nature of aggregates has been investigated for monovalent salts (LiCl, NaCl, KCl, CsCl), divalent salts (CaCl2 and MgCl2), and a trivalent salt (AlCl3), both experimentally by means of turbidity and small angle X-ray scattering (SAXS) measurements, as well as by Monte Carlo simulations using a simple coarse-grained model. For the entire salt series, a critical aggregation concentration (CAC) could be determined by turbidity measurements, as a result of the reduction of effective Coulomb repulsions due to the presence of sulfate groups on the CNC surface. The CACs also followed the Schulze-Hardy law, i.e. the critical aggregation concentration decreased with increasing counterion valence. For the monovalent ions, the CACs followed the trend Li+ > Na+ > K+ > Cs+, which could be rationalized in terms of matching affinities between the cation and the sulfate groups present at the surface of CNCs. From the SAXS measurements it was shown that the density of the aggregates increased with increasing salt concentration and ion valence. In addition, these findings were rationalized by means of simulation, which showed a good correlation with experimental data. The combination of the experimental techniques and the simulations offered insight into interaction-aggregation relationship of CNC suspensions, which is of importance for their structural design applications.
  •  
8.
  • Plylahan, Nareerat, 1984, et al. (författare)
  • Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application
  • 2016
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686. ; 216, s. 24-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionic liquid (IL) and hybrid IL/organic electrolytes with pyrrolidinium cation based ILs have been investigated for application in high temperature lithium-ion batteries (HT-LIBs). The IL based electrolytes show high thermal stabilities, up to 340 degrees C, ionic conductivities of > 5 x 10(-3) S cm(-1) at 80 degrees C, and broad electrochemical stability windows: 0-5 V vs. Li+/Li degrees. The performance of LiFePO4 based half-cells at 80 degrees C is promising, delivering ca. 160 mAh g(-1) at 1C, with a rate capability up to 4C and ca. 98% coulombic efficiency. The creation of hybrid IL/organic electrolytes by adding different organic cyclic carbonate solvents reduces viscosity of the electrolytes by 28% at 80 degrees C, thereby improving the ion transport, and further improves the electrochemical performance; higher stability, better rate capability, and >= 99% coulombic efficiency. Overall, the electrolytes proposed have a potential to be applied in HT-LIBs, a concept with large advantages at the vehicle system level. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
9.
  • Shah, Furqan A., et al. (författare)
  • 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface.
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 30, s. 357-367
  • Tidskriftsartikel (refereegranskat)abstract
    • For load-bearing orthopaedic applications, metal implants having an interconnected pore structure exhibit the potential to facilitate bone ingrowth and the possibility for reducing the stiffness mismatch between the implant and bone, thus eliminating stress-shielding effects. 3D printed solid and macro-porous Ti6Al4V implants were evaluated after six-months healing in adult sheep femora. The ultrastructural composition of the bone-implant interface was investigated using Raman spectroscopy and electron microscopy, in a correlative manner. The mineral crystallinity and the mineral-to-matrix ratios of the interfacial tissue and the native bone were found to be similar. However, lower Ca/P ratios, lower carbonate content, but higher proline, phenylalanine and tyrosine levels indicated that the interfacial tissue remained less mature. Bone healing was more advanced at the porous implant surface (vs. the solid implant surface) based on the interfacial tissue ν1 CO3(2-)/ν2 PO4(3-) ratio, phenylalanine and tyrosine levels approaching those of the native bone. The mechanosensing infrastructure in bone, the osteocyte lacuno-canalicular network, retained ∼40% more canaliculi per osteocyte lacuna, i.e., a 'less aged' morphology at the interface. The osteocyte density per mineralised surface area was ∼36-71% higher at the interface after extended healing periods.
  •  
10.
  • Shah, Furqan A., et al. (författare)
  • Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
  • 2016
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 36:May, s. 296-309
  • Tidskriftsartikel (refereegranskat)abstract
    • In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy