SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Montelius Lars) srt2:(2005-2009)"

Sökning: WFRF:(Montelius Lars) > (2005-2009)

  • Resultat 1-10 av 69
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bordag, Michael, et al. (författare)
  • Shear stress measurements on InAs nanowires by AFM manipulation
  • 2007
  • Ingår i: Small. - Weinheim : Wiley-VCH Verlagsgesellschaft. - 1613-6810 .- 1613-6829. ; 3:8, s. 1398-1401
  • Tidskriftsartikel (refereegranskat)abstract
    • On an upward curve? The curvature of an elastically deformed nanowire pinned to a flat surface contains information about the maximum static friction force, and hence the shear stress, between the nanowire and the surface. Here, InAs nanowires are bent in a controlled manner using the tip of an atomic force microscope (see image). The shear stress can be obtained from a simple analysis according to the standard theory of elasticity.
  •  
3.
  • Conache, Gabriela, et al. (författare)
  • AFM-based manipulation of InAs nanowires
  • 2008
  • Ingår i: Proceedings of the IVC-17 (17th International Vacuum Congress) [also] ICSS-13 (13th International Conference on Surface Science) [also] ICN+T-2007 (International Conference on Nanoscience and Technology). - Bristol : Institute of Physics (IOP). ; 100, s. 052051-052051
  • Konferensbidrag (refereegranskat)abstract
    • A controlled method of manipulation of nanowires was found using the tip of an Atomic Force Microscope (AFM). Manipulation is done in the ‘Retrace Lift’ mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. Using this method, we have studied InAs nanowires on different substrates. We have also investigated interactions between wires and with gold features patterned onto the substrates.
  •  
4.
  • Conache, Gabriela, et al. (författare)
  • Friction measurements of InAs nanowires on Silicon nitride by AFM manipulation
  • 2009
  • Ingår i: Small. - Weinheim, Germany : Wiley-VCH Verlagsgesellschaft. - 1613-6810 .- 1613-6829. ; 5:2, s. 203-207
  • Tidskriftsartikel (refereegranskat)abstract
    • A study was conducted to perform friction measurements of InAs nanowires (NW) on silicon nitride (Si 3N 4) through atomic force microscopy (AFM) manipulation. The investigations revealed the friction force per unit length for sliding and static friction over a range of nanowire diameters. It was found that there is a significant difference between the coefficients of the two sliding modes for large wires. It was also found that the difference between the two sliding modes disappears at smaller diameters and the sliding friction becomes equal with the static friction. The AFM investigations were performed on a Nanoscope IIIa Dimension 3100, using rectangular cantilevers, with a nominal spring constant of 30 N m -1. The nanowires were manipulated, using the 'Retrace Lift' mode of the AFM controller. The friction force per unit length was gathered from the local curvature of the NWs, using standard elasticity theory.
  •  
5.
  • Conache, Gabriela, 1977-, et al. (författare)
  • Nanowire friction with an applied bias
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • Recently, we have shown how the friction acting on nanowires pushed across a surface by an AFM tip can be determined by measuring the radius of curvature of the bent wire aŸer manipulation. This technique allows us to study the friction properties of an extended mesoscale contact. Our main focus has been to determine whether such contacts behave like macroscopic objects, in which dišerences between the 'true' and 'apparent' contact areas play a key role and friction varies linearly with the applied normal force, or whether they are more like atomic-scale point contacts, wheremore fundamental processes dominate and friction oŸen is independent of the normal force. In this work we show how the friction between InAs nanowires and an insulating silicon nitride layer on a conductive silicon substrate varies when a DC voltage is applied to the AFM tip during manipulation. e tip charges the capacitor formed by the wire and the grounded silicon back contact, giving rise to attractive Coulomb forces and thus increasing the contact pressure between the wire and the silicon nitride. In this way we can vary the normal force on the sliding surfaces using a single wire, with a constant structure and contact geometry. Using nanowires of about 40-50 nm diameter and a few microns in length we have applied tip voltages in the range +12 to -12 V. Simplemodeling indicates that these voltages su›ce to give similar levels of band-lling and depletion to when the same wires are used in working wrap-gate or back-gate devices. A monotonic increase of the sliding friction with the voltage applied on the tip was observed. is implies that the friction increases with the normal force and that this mesoscopic system behaves more like a macroscopic contact, despite the nanometer size of the contact in the direction of motion.
  •  
6.
  •  
7.
  • Eriksson Linsmeier, Cecilia, et al. (författare)
  • Nanowire Biocompatibility in the Brain - Looking for a Needle in a 3D Stack.
  • 2009
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 9:12, s. 4184-4190
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the brain-tissue response to nanowire implantations in the rat striatum after 1, 6, and 12 weeks using immunohistochemistry. The nanowires could be visualized in the scar by confocal microscopy (through the scattered laser light). For the nanowire-implanted animals, there is a significant astrocyte response at week 1 compared to controls. The nanowires are phagocytized by ED1 positive microglia, and some of them are degraded and/or transported away from the brain.
  •  
8.
  • Hällström, Waldemar, et al. (författare)
  • Gallium phosphide nanowires as a substrate for cultured neurons
  • 2007
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 7:10, s. 2960-2965
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 mu m long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 69

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy