SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nilsson M.) ;spr:eng;srt2:(2020-2024)"

Search: WFRF:(Nilsson M.) > English > (2020-2024)

  • Result 1-10 of 1200
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
6.
  • Hyde, K. D., et al. (author)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • In: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Journal article (peer-reviewed)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
7.
  • Abe, H., et al. (author)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Journal article (peer-reviewed)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
8.
  • Adams, C. B., et al. (author)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Journal article (peer-reviewed)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 1200
Type of publication
journal article (1007)
conference paper (149)
research review (22)
book chapter (10)
doctoral thesis (5)
other publication (2)
show more...
editorial collection (1)
reports (1)
book (1)
show less...
Type of content
peer-reviewed (994)
other academic/artistic (203)
pop. science, debate, etc. (1)
Author/Editor
Nilsson, Peter M (166)
Nilsson, M (147)
Nilsson, P. (78)
Olsson, T (55)
Melander, Olle (47)
Piehl, F (46)
show more...
Nilsson, C (43)
Lycke, J (43)
Burman, J. (42)
Hillert, J (40)
Svenningsson, A (40)
Nilsson, Peter (39)
Engström, Gunnar (38)
Martin, C (34)
Dahle, C. (34)
Forsberg, L. (34)
Klevebro, F (28)
Nilsson, Kristofer F ... (27)
Orho-Melander, Marju (27)
Lindblad, M (26)
Gunnarsson, M (25)
van Hillegersberg, R (24)
Nilsson, Mats (23)
Rouvelas, I (23)
Nilsson, Thomas, 196 ... (21)
Nilsson, D (21)
Piessen, G (21)
Lordick, F. (21)
Gunnarsson, Martin, ... (20)
Nilsson, Staffan, 19 ... (19)
Jujic, Amra (19)
Gisbertz, SS (19)
Nilsson, Elisabet M. ... (19)
Nilsson, Jan (17)
Reynolds, JV (17)
Nieuwenhuijzen, GAP (16)
Groop, Leif (16)
Nilsson, J. (15)
Blennow, Kaj, 1958 (15)
Nilsson, R. Henrik, ... (15)
Nilsson, G (15)
Landtblom, A. -M (15)
Lagergren, P (15)
Rosati, R (15)
Nafteux, P (15)
Hanna, GB (14)
Zetterberg, Henrik, ... (14)
Aumann, T (14)
Nilsson, S. (14)
Scheit, H. (14)
show less...
University
Karolinska Institutet (542)
Lund University (355)
University of Gothenburg (226)
Uppsala University (120)
Umeå University (102)
Örebro University (79)
show more...
Linköping University (75)
Chalmers University of Technology (67)
Royal Institute of Technology (61)
Stockholm University (53)
Malmö University (39)
Swedish University of Agricultural Sciences (32)
Linnaeus University (22)
RISE (10)
Luleå University of Technology (6)
Kristianstad University College (5)
University West (5)
Swedish Museum of Natural History (5)
Jönköping University (4)
Mid Sweden University (4)
Halmstad University (3)
University of Borås (3)
Högskolan Dalarna (3)
University of Gävle (2)
Mälardalen University (2)
University of Skövde (2)
Red Cross University College (2)
The Swedish School of Sport and Health Sciences (1)
show less...
Language
Research subject (UKÄ/SCB)
Medical and Health Sciences (609)
Natural sciences (215)
Engineering and Technology (38)
Social Sciences (26)
Agricultural Sciences (21)
Humanities (18)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view