SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orho Melander M) srt2:(2005-2009)"

Sökning: WFRF:(Orho Melander M) > (2005-2009)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Newton-Cheh, Christopher, et al. (författare)
  • Genome-wide association study identifies eight loci associated with blood pressure
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:6, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N <= 71,225 European ancestry, N <= 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 x 10(-24)), CYP1A2 (P = 1 x 10(-23)), FGF5 (P = 1 x 10(-21)), SH2B3 (P = 3 x 10(-18)), MTHFR (P = 2 x 10(-13)), c10orf107 (P = 1 x 10(-9)), ZNF652 (P = 5 x 10(-9)) and PLCD3 (P = 1 x 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
  •  
2.
  • Kathiresan, Sekar, et al. (författare)
  • Common variants at 30 loci contribute to polygenic dyslipidemia
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 x 10(-8)), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10(-15) for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
  •  
3.
  • Kathiresan, Sekar, et al. (författare)
  • Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.
  • 2008
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:2, s. 189-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood concentrations of lipoproteins and lipids are heritable risk factors for cardiovascular disease. Using genome-wide association data from three studies (n = 8,816 that included 2,758 individuals from the Diabetes Genetics Initiative specific to the current paper as well as 1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables reported in a companion paper in this issue) and targeted replication association analyses in up to 18,554 independent participants, we show that common SNPs at 18 loci are reproducibly associated with concentrations of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and/or triglycerides. Six of these loci are new (P < 5 x 10(-8) for each new locus). Of the six newly identified chromosomal regions, two were associated with LDL cholesterol (1p13 near CELSR2, PSRC1 and SORT1 and 19p13 near CILP2 and PBX4), one with HDL cholesterol (1q42 in GALNT2) and five with triglycerides (7q11 near TBL2 and MLXIPL, 8q24 near TRIB1, 1q42 in GALNT2, 19p13 near CILP2 and PBX4 and 1p31 near ANGPTL3). At 1p13, the LDL-associated SNP was also strongly correlated with CELSR2, PSRC1, and SORT1 transcript levels in human liver, and a proxy for this SNP was recently shown to affect risk for coronary artery disease. Understanding the molecular, cellular and clinical consequences of the newly identified loci may inform therapy and clinical care.
  •  
4.
  • Kathiresan, Sekar, et al. (författare)
  • A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study
  • 2007
  • Ingår i: BMC Medical Genetics. - 1471-2350. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Blood lipid levels including low-density lipoprotein cholesterol ( LDL-C), high-density lipoprotein cholesterol ( HDL-C), and triglycerides ( TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes. Methods: In 1087 Framingham Heart Study Offspring cohort participants ( mean age 47 years, 52% women), we conducted genome-wide analyses ( Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a similar to 30 year span were the primary phenotypes. We used generalized estimating equations ( GEE), family-based association tests ( FBAT) and variance components linkage to investigate the relationships between SNPs ( on autosomes, with minor allele frequency >= 10%, genotypic call rate >= 80%, and Hardy-Weinberg equilibrium p >= 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs ( P < 0.001 in Stage I) tested in Stage II ( n similar to 1450 individuals) and 40 SNPs ( P < 0.001 in joint analysis of Stages I and II) tested in Stage III ( n similar to 6650 individuals). Results: Long-term averages of LDL-C, HDL-C, and TG were highly heritable ( h(2) = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10(-5) in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10(-4) ranged from 13 to 18 and with p < 10(-3), from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene ( LPL) and HDL-C and TG ( rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association ( i.e., combined P < 10(-5) across all three stages) between any of the tested SNPs and lipid phenotypes. Conclusion: Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects ( i.e., < 1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.
  •  
5.
  •  
6.
  • Kathiresan, S., et al. (författare)
  • Polymorphisms associated with cholesterol and risk of cardiovascular events
  • 2008
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 358:12, s. 1240-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Common single-nucleotide polymorphisms (SNPs) that are associated with blood low-density lipoprotein (LDL) or high-density lipoprotein (HDL) cholesterol modestly affect lipid levels. We tested the hypothesis that a combination of such SNPs contributes to the risk of cardiovascular disease. Methods: We studied SNPs at nine loci in 5414 subjects from the cardiovascular cohort of the Malmo Diet and Cancer Study. We first validated the association between SNPs and either LDL or HDL cholesterol and subsequently created a genotype score on the basis of the number of unfavorable alleles. We used Cox proportional-hazards models to determine the time to the first cardiovascular event in relation to the genotype score. Results: All nine SNPs showed replication of an association with levels of either LDL or HDL cholesterol. With increasing genotype scores, the level of LDL cholesterol increased from 152 mg to 171 mg per deciliter (3.9 to 4.4 mmol per liter), whereas HDL cholesterol decreased from 60 mg to 51 mg per deciliter (1.6 to 1.3 mmol per liter). During follow-up (median, 10.6 years), 238 subjects had a first cardiovascular event. The genotype score was associated with incident cardiovascular disease in models adjusted for covariates including baseline lipid levels (P<0.001). The use of the genotype score did not improve the clinical risk prediction, as assessed by the C statistic. However, there was a significant improvement in risk classification with the use of models that included the genotype score, as compared with those that did not include the genotype score. Conclusions: A genotype score of nine validated SNPs that are associated with modulation in levels of LDL or HDL cholesterol was an independent risk factor for incident cardiovascular disease. The score did not improve risk discrimination but did modestly improve clinical risk reclassification for individual subjects beyond standard clinical factors.
  •  
7.
  • Kotronen, A., et al. (författare)
  • A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52:6, s. 1056-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been suggested that the rs738409 G allele in PNPLA3, which encodes adiponutrin, is strongly associated with increased liver fat content in three different ethnic groups. The aims of the present study were as follows: (1) to try to replicate these findings in European individuals with quantitative measures of hepatic fat content; (2) to study whether the polymorphism influences hepatic and adipose tissue insulin sensitivity; and (3) to investigate whether PNPLA3 expression is altered in the human fatty liver. We genotyped 291 Finnish individuals in whom liver fat had been measured using proton magnetic resonance spectroscopy. Hepatic PNPLA3 expression was measured in 32 participants. Hepatic and adipose tissue insulin sensitivities were measured using a euglycaemic-hyperinsulinaemic (insulin infusion 0.3 mU kg(-1) min(-1)) clamp technique combined with infusion of [3-H-3]glucose in 109 participants. The rs738409 G allele in PNPLA3 was associated with increased quantitative measures of liver fat content (p = 0.011) and serum aspartate aminotransferase concentrations (p = 0.002) independently of age, sex and BMI. Fasting serum insulin and hepatic and adipose tissue insulin sensitivity were related to liver fat content independently of genotype status. PNPLA3 mRNA expression in the liver was positively related to obesity (r = 0.62, p < 0.0001) and to liver fat content (r = 0.58, p = 0.025) in participants who were not morbidly obese (BMI < 40 kg/m(2)). A common variant in PNPLA3 increases the risk of hepatic steatosis in humans.
  •  
8.
  •  
9.
  • Musunuru, Kiran, et al. (författare)
  • Ion Mobility Analysis of Lipoprotein Subfractions Identifies Three Independent Axes of Cardiovascular Risk.
  • 2009
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 29, s. 628-1975
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Whereas epidemiological studies show that levels of low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) predict incident cardiovascular disease (CVD), there is limited evidence relating lipoprotein subfractions and composite measures of subfractions to risk for CVD in prospective cohort studies. METHODS AND RESULTS: We tested whether combinations of lipoprotein subfractions independently predict CVD in a prospective cohort of 4594 initially healthy men and women (the Malmö Diet and Cancer Study, mean follow-up 12.2 years, 377 incident cardiovascular events). Plasma lipoproteins and lipoprotein subfractions were measured at baseline with a novel high-resolution ion mobility technique. Principal component analysis (PCA) of subfraction concentrations identified 3 major independent (ie, zero correlation) components of CVD risk, one representing LDL-associated risk, a second representing HDL-associated protection, and the third representing a pattern of decreased large HDL, increased small/medium LDL, and increased triglycerides. The last corresponds to the previously described "atherogenic lipoprotein phenotype." Several genes that may underlie this phenotype-CETP, LIPC, GALNT2, MLXIPL, APOA1/A5, LPL-are suggested by SNPs associated with the combination of small/medium LDL and large HDL. CONCLUSIONS: PCA on lipoprotein subfractions yielded three independent components of CVD risk. Genetic analyses suggest these components represent independent mechanistic pathways for development of CVD.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy