SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parisi J E) srt2:(2020-2022);srt2:(2020)"

Sökning: WFRF:(Parisi J E) > (2020-2022) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gao, YX, et al. (författare)
  • Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 12184-
  • Tidskriftsartikel (refereegranskat)abstract
    • We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.
  •  
2.
  • Hatos, Andras, et al. (författare)
  • DisProt : intrinsic protein disorder annotation in 2020
  • 2020
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 48:D1, s. D269-D276
  • Tidskriftsartikel (refereegranskat)abstract
    • The Database of Protein Disorder (DisProt, URL:https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.
  •  
3.
  • Giorgini, Ludovico T., et al. (författare)
  • Two-loop corrections to the large-order behavior of correlation functions in the one-dimensional N-vector model
  • 2020
  • Ingår i: Physical Review D. - : American Physical Society (APS). - 1550-7998 .- 1550-2368. ; 101:12
  • Tidskriftsartikel (refereegranskat)abstract
    • For a long time, the predictive limits of perturbative quantum field theory have been limited by our inability to carry out loop calculations to an arbitrarily high order, which become increasingly complex as the order of perturbation theory is increased. This problem is exacerbated by the fact that perturbation series derived from loop diagram (Feynman diagram) calculations represent asymptotic (divergent) series which limits the predictive power of perturbative quantum field theory. Here, we discuss an ansatz that could overcome these limits, based on the observations that (i) for many phenomenologically relevant field theories, one can derive dispersion relations which relate the large-order growth (the asymptotic limit of infinite loop order) with the imaginary part of arbitrary correlation functions, for negative coupling (unstable vacuum), and (ii) one can analyze the imaginary part for negative coupling in terms of classical field configurations (instantons). Unfortunately, the perturbation theory around instantons, which could lead to much more accurate predictions for the large-order behavior of Feynman diagrams, poses a number of technical as well as computational difficulties. Here, we study, to further the above-mentioned ansatz, correlation functions in a one-dimensional (1D) field theory with a quartic self-interaction and an O(N) internal symmetry group, otherwise known as the 1D N-vector model. Our focus is on corrections to the large-order growth of perturbative coefficients, i.e., the limit of a large number of loops in the Feynman diagram expansion. We evaluate, in momentum space, the two-loop corrections for the two-point correlation function, and its derivative with respect to the momentum, as well as the two-point correlation function with a wigglet insertion. Also, we study the four-point function. These quantities, computed at zero momentum transfer, enter the renormalization-group functions (Callan-Symanzik equation) of the model. Our calculations pave the way for further development of related methods in field theory and for a better understanding of field-theoretical expansions at large order.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy