SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Popovichev S) srt2:(2010-2014)"

Sökning: WFRF:(Popovichev S) > (2010-2014)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Kiptily, V. G., et al. (författare)
  • Fusion Alpha-Particle Diagnostics for DT Experiments on the Joint European Torus
  • 2014
  • Ingår i: FUSION REACTOR DIAGNOSTICS. - : AIP Publishing LLC. ; , s. 87-92
  • Konferensbidrag (refereegranskat)abstract
    • JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of alpha-particles in DT operation. The direct measurements of alphas are very difficult and alpha-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the alpha-particle source and its evolution in space and time, alpha-particle energy distribution, and alpha-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for alpha-particle measurements, and what options exist for keeping the essential alpha-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, alpha-particle diagnostics for ITER are discussed.
  •  
4.
  • Perez Von Thun, C., et al. (författare)
  • Study of fast-ion transport induced by fishbones on JET
  • 2012
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 52:9, s. 094010-
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of fishbone oscillations onto a confined fast-ion population is simulated for a JET plasma and benchmarked against experiment quantitatively with the help of neutron rate measurements. The transient drops in volume integrated neutron emission are found to be mainly caused by the spatial redistribution of the (neutral beam injected) fast-ion population confined in the plasma rather than by fast-ion loss. The simulations yield a quadratic dependence of the neutron drop on the fishbone amplitude. It is found that the simulations are able to correctly reproduce the magnitude of the experimentally observed drop in volume integrated neutron emission to within a factor 2. Furthermore, frequency chirping is found to be important. Omitting the fishbone frequency chirp in the simulations reduces the magnitude of the neutron rate drop (and hence fast-ion redistribution) to about half its original value.
  •  
5.
  • Syme, D. B., et al. (författare)
  • Fusion yield measurements on JET and their calibration
  • 2014
  • Ingår i: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 89:11, s. 2766-2775
  • Tidskriftsartikel (refereegranskat)abstract
    • The power output of fusion experiments and fusion reactor-like devices is measured in terms of the neutron yields which relate directly to the fusion yield. In this paper we describe the devices and methods used to make the new in situ calibration of JET in April 2013 and its early results. The target accuracy of this calibration was 10%, just as in the earlier JET calibration and as required for ITER, where a precise neutron yield measurement is important, e.g., for tritium accountancy. We discuss the constraints and early decisions which defined the main calibration approach, e.g., the choice of source type and the deployment method. We describe the physics, source issues, safety and engineering aspects required to calibrate directly the Fission Chambers and the Activation System which carry the JET neutron calibration. In particular a direct calibration of the Activation system was planned for the first time in JET. We used the existing JET remote-handling system to deploy the Cf-252 source and developed the compatible tooling and systems necessary to ensure safe and efficient deployment in these cases. The scientific programme has sought to better understand the limitations of the calibration, to optimise the measurements and other provisions, to provide corrections for perturbing factors (e.g., presence of the remote-handling boom and other non-standard torus conditions) and to ensure personnel safety and safe working conditions. Much of this work has been based on an extensive programme of Monte-Carlo calculations which, e.g., revealed a potential contribution to the neutron yield via a direct line of sight through the ports which presents individually depending on the details of the port geometry.
  •  
6.
  • Voitsekhovitch, I., et al. (författare)
  • Modelling of the JET current ramp-up experiments and projection to ITER
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 52:10, s. 105011-
  • Tidskriftsartikel (refereegranskat)abstract
    • The current ramp-up phase of ITER demonstration discharges, performed at JET, is analysed and the capability of the empirical L-mode Bohm-gyroBohm and Coppi-Tang transport models as well as the theory-based GLF23 model to predict the temperature evolution in these discharges is examined. The analysed database includes ohmic (OH) plasmas with various current ramp rates and plasma densities and the L-mode plasmas with the ion cyclotron radio frequency (ICRF) and neutral beam injection (NB!) heating performed at various ICRF resonance positions and NBI heating powers. The emphasis of this analysis is a data consistency test, which is particularly important here because some parameters, useful for the transport model validation, are not measured in OH and ICRF heated plasmas (e.g. ion temperature, effective charge). The sensitivity of the predictive accuracy of the transport models to the unmeasured data is estimated. It is found that the Bohm-gyroBohm model satisfactorily predicts the temperature evolution in discharges with central heating (the rms deviation between the simulated and measured temperature is within 15%), but underestimates the thermal electron transport in the OH and off-axis ICRF heated discharges. The Coppi-Tang model strongly underestimates the thermal transport in all discharges considered. A re-normalization of these empirical models for improving their predictive capability is proposed. The GLF23 model, strongly dependent on the ion temperature gradient and tested only for NBI heated discharges with measured ion temperatures, predicts accurately the temperature in the low power NBI heated discharge (rms < 10%) while the discrepancy with the data increases at high power. Based on the analysis of the JET discharges, the modelling of the current ramp-up phase for the H-mode ITER scenario is performed with particular emphasis on the sensitivity of the sawtooth-free duration of this phase to transport model.
  •  
7.
  • Gatu Johnson, Maria, et al. (författare)
  • Modelling and TOFOR measurements of scattered neutrons at JET
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 52:8, s. 085002-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the scattered and direct neutron fluxes in the line of sight (LOS) of the TOFOR neutron spectrometer at JET are simulated and the simulations compared with measurement results. The Monte Carlo code MCNPX is used in the simulations, with a vessel material composition obtained from the JET drawing office and neutron emission profiles calculated from TRANSP simulations of beam ion density profiles. The MCNPX simulations show that the material composition of the scattering wall has a large effect on the shape of the scattered neutron spectrum. Neutron source profile shapes as well as radial and vertical source displacements in the TOFOR LOS are shown to only marginally affect the scatter, while having a larger impact on the direct neutron flux. A matrix of simulated scatter spectra for mono-energetic source neutrons is created which is folded with an approximation of the source spectrum for each JET pulse studied to obtain a scatter component for use in the data analysis. The scatter components thus obtained are shown to describe the measured data. It is also demonstrated that the scattered flux is approximately constant relative to the total neutron yield as measured with the JET fission chambers, while there is a larger spread in the direct flux, consistent with simulations. The simulated effect on the integrated scattered/direct ratio of an increase with movements outward along the radial direction and a drop at higher values of the vertical plasma position is also reproduced in the measurements. Finally, the quantitative agreement found in scatter/direct ratios between simulations (0.185 ± 0.005) and measurements (0.187 ± 0.050) serves as a solid benchmark of the MCNPX model used.
  •  
8.
  • Gherendi, M., et al. (författare)
  • Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors
  • 2012
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 83:10, s. 10E124-
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or bubble detectors) in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors. Using a set of three bubble detector spectrometers the neutron energy distribution was determined over a broad energy range, from about 10 keV to above 10 MeV, with an energy resolution of about 30% at 2.5 MeV. The very broad energy response allowed for the identification of energy features far from the main fusion component (around 2.45 MeV for deuterium discharges).
  •  
9.
  • Giacomelli, L., et al. (författare)
  • Neutron Emission Profiles and Energy Spectra Measurements at JET
  • 2014
  • Ingår i: FUSION REACTOR DIAGNOSTICS. - : AIP Publishing LLC. ; , s. 113-116
  • Konferensbidrag (refereegranskat)abstract
    • The joint European Torus (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.
  •  
10.
  • Giacomelli, L., et al. (författare)
  • Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus
  • 2014
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 85:2, s. 023505-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/gamma discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy