SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puschmann Andreas) srt2:(2020-2023);srt2:(2023)"

Sökning: WFRF:(Puschmann Andreas) > (2020-2023) > (2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almasoudi, Wejdan, et al. (författare)
  • Co-occurrence of CLCN2-related leukoencephalopathy and SPG56
  • 2023
  • Ingår i: Clinical Parkinsonism and Related Disorders. - : Elsevier BV. - 2590-1125. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Family Report: Two rare autosomal recessive neurological disorders, leukoencephalopathy with ataxia and spastic paraplegia 56 (SPG56), were found in members of the same family. Two siblings presented with spastic paraplegia, cognitive impairment, bladder and bowel dysfunction and gait ataxia; their consanguineous parents were unaffected. Ophthalmological examination revealed chorioretinopathy. Brain MRI showed T2 hyperintensities and T1 hypointensities in the internal capsules, cerebral peduncles, pyramidal tracts and middle cerebellar peduncles. Both affected siblings were homozygous for CYP2U1 c.947A > T p.(Asp316Val), a known cause for SPG56. However, they were also homozygous for the novel variant CLCN2 c.607G > T, p.(Gly203Cys), classified as a variant of unknown significance. Testing of additional family members revealed homozygosity for both variants in an additional brother, whom we initially considered unaffected. Both male CLCN2 carriers were infertile, and review of the literature revealed one reported case with azoospermia, however the brother had no overt signs of SPG56. His testicular biopsy revealed incomplete maturation arrest in spermatogenesis; clinically we found mild memory impairment and hand tremor and MRI showed similar changes as his siblings. We consider CLCN2 c.607G > T pathogenic because of the neuroradiological and clinical findings, including azoospermia. Conclusion: Considerable workup may be required to determine the pathogenicity of novel variants, and to unambiguously associate phenotype with genotype. In very rare disorders, highly specific clinical or biomarker combinations provide sufficient evidence for a variant's pathogenicity. Phenotypic variation of monogenic disorders described in the literature may be attributed to a second co-occurring monogenic disorder, especially in consanguineous families. SPG56 may have reduced penetrance.
  •  
2.
  • Fiesel, Fabienne C., et al. (författare)
  • Substitution of PINK1 Gly411 modulates substrate receptivity and turnover
  • 2023
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 19:6, s. 1711-1732
  • Tidskriftsartikel (refereegranskat)abstract
    • The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development. Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.
  •  
3.
  • Ilinca, Andreea, et al. (författare)
  • Updated Stroke Gene Panels : Rapid evolution of knowledge on monogenic causes of stroke
  • 2023
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813. ; 31:2, s. 239-242
  • Tidskriftsartikel (refereegranskat)abstract
    • This article updates our previous Stroke Gene Panels (SGP) from 2017. Online Mendelian Inheritance in Man and PubMed were searched. We divided detected genes into two SGP groups, SGP1: genes reported in at least one person with stroke and associated with one or more clinical subgroups: large artery atherosclerotic, large artery non-atherosclerotic (tortuosity, dolichoectasia, aneurysm, non-atherosclerotic dissection or occlusion), cerebral small vessel diseases, cardio-embolic (arrhythmia, heart defect, cardiomyopathy), coagulation dysfunctions (venous thrombosis, arterial thrombosis, bleeding tendency), intracerebral hemorrhage, vascular malformations (cavernoma, arteriovenous malformations) and metabolism disorders; and SGP2: genes related to diseases that may predispose to stroke. We identified 168 SGP1 genes, 70 of these were validated for clinical practice. We also detected 72 SGP2 genes. Nine genes were removed because of conflicting evidence. The number of genes increased from 168 to 240 during 4.5-years, reflecting a dynamic evolution and the need for regular updates for research and clinical use.
  •  
4.
  • Smith, Ruben, et al. (författare)
  • The α-synuclein PET tracer [18F] ACI-12589 distinguishes multiple system atrophy from other neurodegenerative diseases
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A positron emission tomography (PET) tracer detecting α-synuclein pathology will improve the diagnosis, and ultimately the treatment of α-synuclein-related diseases. Here we show that the PET ligand, [18F]ACI-12589, displays good in vitro affinity and specificity for pathological α-synuclein in tissues from patients with different α-synuclein-related disorders including Parkinson’s disease (PD) and Multiple-System Atrophy (MSA) using autoradiography and radiobinding techniques. In the initial clinical evaluation we include 23 participants with α-synuclein related disorders, 11 with other neurodegenerative disorders and eight controls. In vivo [18F]ACI-12589 demonstrates clear binding in the cerebellar white matter and middle cerebellar peduncles of MSA patients, regions known to be highly affected by α-synuclein pathology, but shows limited binding in PD. The binding statistically separates MSA patients from healthy controls and subjects with other neurodegenerative disorders, including other synucleinopathies. Our results indicate that α-synuclein pathology in MSA can be identified using [18F]ACI-12589 PET imaging, potentially improving the diagnostic work-up of MSA and allowing for detection of drug target engagement in vivo of novel α-synuclein targeting therapies.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy