SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rademakers Rosa) srt2:(2013)"

Sökning: WFRF:(Rademakers Rosa) > (2013)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, Betty, et al. (författare)
  • Long-range angular correlations on the near and away side in p-Pb collisions at root S-NN=5.02 TeV
  • 2013
  • Ingår i: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 719:1-3, s. 29-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5 < P-T,P-assoc < P-T,P-trig < 4 GeV/c. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and p(T) bins, and the widths show no significant evolution with event multiplicity or p(T). These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge. (c) 2013 CERN. Published by Elsevier B.V. All rights reserved.
  •  
2.
  • Rademakers, Frank, et al. (författare)
  • Determining optimal noninvasive parameters for the prediction of left ventricular remodeling in chronic ischemic patients
  • 2013
  • Ingår i: Scandinavian Cardiovascular Journal. - : Informa Healthcare. - 1401-7431 .- 1651-2006. ; 47:6, s. 329-334
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives. DOPPLER-CIP aims to determine the optimal noninvasive parameters (myocardial function, perfusion, ventricular blood flow, cell integrity) and methodology (ergometry, echocardiography, scintigraphy, MRI) in a given ischemic substrate that best predicts the impact of an intervention (or the lack thereof) on adverse morphological ventricular remodeling and functional recovery. Moreover, the relative predictive value of each of these parameters, in respect to the cost of extracting this information in order to enable optimization of cost-effectiveness for improved health care, will be determined by this project. Design. DOPPLER-CIP is a multi-center registry study. All patients with ischemic heart disease included in this study undergo at least two noninvasive stress imaging examinations at baseline. The presence/or absence of left ventricular (LV) remodeling will be assessed after a follow-up of 2 years, during which all cardiac events will be registered. Results. 676 patients were included. Currently, baseline data analysis is almost finished and the follow-up is ongoing. Conclusions. After completion, DOPPLER-CIP will provide evidence-based guidelines toward the most effective use of cardiac imaging in the chronically ischemic heart disease patient. The study will generate information, knowledge, and insight into the new imaging methodologies and into the pathophysiology of chronic ischemic heart disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy