SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renström Erik) srt2:(2020-2021)"

Sökning: WFRF:(Renström Erik) > (2020-2021)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Gerd, et al. (författare)
  • Upper-extremity Spasticity-reducing Treatment in Adjunct to Movement Training and Orthoses in Children with Cerebral Palsy at Gross Motor Function- and Manual Ability Classification System Levels IV-V : A Descriptive Study
  • 2020
  • Ingår i: Developmental Neurorehabilitation. - : Taylor & Francis. - 1751-8423 .- 1751-8431. ; 23:6, s. 349-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Covering a 20-year period of work with children with severe cerebral palsy (CP) within a Swedish habilitation service, changes in passive wrist extension with fingers extended (PWE-FE) and current hand function are described and compared between children receiving systematic upper-extremity treatment with botulinum neurotoxin type A and intervention programs from before 7 years of age (Group 1, n = 7), those whom for various reasons did not undergo this treatment (Group 2, n = 10), and those not having the option to receive treatment until later during childhood/adolescence (Group 3, n = 8). Group 3 showed more critical and less normal PWE-FE values for both wrists, and poorer hand function scores, particularly compared with Group 1. Findings cautiously suggest that repeated upper-extremity spasticity-reducing treatment and movement training/orthoses from an early age may help prevent critical loss of passive range of motion of the wrist joint flexion/extension and promote hand function development in children with severe CP.
  •  
2.
  • Bompada, Pradeep, et al. (författare)
  • Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease
  • 2021
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.
  •  
3.
  • Cataldo, Luis Rodrigo, et al. (författare)
  • The MafA-target gene PPP1R1A regulates GLP1R-mediated amplification of glucose-stimulated insulin secretion in β-cells
  • 2021
  • Ingår i: Metabolism: Clinical and Experimental. - : Elsevier BV. - 1532-8600.
  • Tidskriftsartikel (refereegranskat)abstract
    • The amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in β-cells and that its expression is reduced in dysfunctional β-cells lacking MafA and upon acute MafA knock down. MafA is a central regulator of GSIS and β-cell function. We observed a strong correlation of MAFA and PPP1R1A mRNA levels in human islets, moreover, PPP1R1A mRNA levels were reduced in type 2 diabetic islets and positively correlated with GLP1-mediated GSIS amplification. PPP1R1A silencing in β-cell lines impaired GSIS amplification, PKA-target protein phosphorylation, mitochondrial coupling efficiency and also the expression of critical β-cell marker genes like MafA, Pdx1, NeuroD1 and Pax6. Our results demonstrate that the β-cell transcription factor MafA is required for PPP1R1A expression and that reduced β-cell PPP1R1A levels impaired β-cell function and contributed to β-cell dedifferentiation during type 2 diabetes. Loss of PPP1R1A in type 2 diabetic β-cells may explains the unresponsiveness of type 2 diabetic patients to GLP1R-based treatments.
  •  
4.
  • Seiron, Peter, et al. (författare)
  • Transcriptional analysis of islets of Langerhans from organ donors of different ages
  • 2021
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is impaired with increasing age. In this study, we aimed to determine whether aging induces specific transcriptional changes in human islets. Laser capture microdissection was used to extract pancreatic islet tissue from 37 deceased organ donors aged 1-81 years. The transcriptomes of the extracted islets were analysed using Ion AmpliSeq sequencing. 346 genes that co-vary significantly with age were found. There was an increased transcription of genes linked to senescence, and several aspects of the cell cycle machinery were downregulated with increasing age. We detected numerous genes not linked to aging in previous studies likely because earlier studies analysed islet cells isolated by enzymatic digestion which might affect the islet transcriptome. Among the novel genes demonstrated to correlate with age, we found an upregulation of SPP1 encoding osteopontin. In beta cells, osteopontin has been seen to be protective against both cytotoxicity and hyperglycaemia. In summary, we present a transcriptional profile of aging in human islets and identify genes that could affect disease course in diabetes.
  •  
5.
  • Stoll, Lisa, et al. (författare)
  • A circular RNA generated from an intron of the insulin gene controls insulin secretion
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine-tuning of insulin release from pancreatic β-cells is essential to maintain blood glucose homeostasis. Here, we report that insulin secretion is regulated by a circular RNA containing the lariat sequence of the second intron of the insulin gene. Silencing of this intronic circular RNA in pancreatic islets leads to a decrease in the expression of key components of the secretory machinery of β-cells, resulting in impaired glucose- or KCl-induced insulin release and calcium signaling. The effect of the circular RNA is exerted at the transcriptional level and involves an interaction with the RNA-binding protein TAR DNA-binding protein 43 kDa (TDP-43). The level of this circularized intron is reduced in the islets of rodent diabetes models and of type 2 diabetic patients, possibly explaining their impaired secretory capacity. The study of this and other circular RNAs helps understanding β-cell dysfunction under diabetes conditions, and the etiology of this common metabolic disorder.
  •  
6.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
7.
  • Wu, Chuanyan, et al. (författare)
  • Elevated circulating follistatin associates with an increased risk of type 2 diabetes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04-1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09-1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.
  •  
8.
  • Yingying, Ye, et al. (författare)
  • The TCF7L2-dependent high-voltage activated calcium channel subunit α2δ-1 controls calcium signaling in rodent pancreatic beta-cells
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 502, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor TCF7L2 remains the most important diabetes gene identified to date and genetic risk carriers exhibit lower insulin secretion. We show that Tcf7l2 regulates the auxiliary subunit of voltage-gated Ca2+ channels, Cacna2d1 gene/α2δ-1 protein levels. Furthermore, suppression of α2δ-1 decreased voltage-gated Ca2+ currents and high glucose/depolarization-evoked Ca2+ signaling which mimicked the effect of silencing of Tcf7l2. This appears to be the result of impaired voltage-gated Ca2+ channel trafficking to the plasma membrane, as Cav1.2 channels accumulated in the recycling endosomes after α2δ-1 suppression, in clonal as well as primary rodent beta-cells. This impaired the capacity for glucose-induced insulin secretion in Cacna2d1-silenced cells. Overexpression of α2δ-1 increased high-glucose/K+-stimulated insulin secretion. Furthermore, overexpression of α2δ-1 in Tcf7l2-silenced cells rescued the Tcf7l2-dependent impairment of Ca2+ signaling, but not the reduced insulin secretion. Taken together, these data clarify the connection between Tcf7l2, α2δ-1 in Ca2+-dependent insulin secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy