SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Romanelli M.) srt2:(2010-2014)"

Search: WFRF:(Romanelli M.) > (2010-2014)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Meyer, H., et al. (author)
  • Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104008-
  • Journal article (peer-reviewed)abstract
    • New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.
  •  
4.
  • Romanelli, M., et al. (author)
  • JINTRAC: A system of codes for integrated simulation of Tokamak scenarios
  • 2014
  • In: Plasma and Fusion Research. - : Japan Society of Plasma Science and Nuclear Fusion Research. - 1880-6821. ; 9:SPECIALISSUE.2
  • Journal article (peer-reviewed)abstract
    • Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding. © 2014 The Japan Society of Plasma Science and Nuclear Fusion Research.
  •  
5.
  • Voitsekhovitch, I., et al. (author)
  • Integrated modelling for tokamak plasma: Physics and scenario optimisation
  • 2012
  • In: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 1314-1317
  • Conference paper (peer-reviewed)abstract
    • Simulations of JET and AUG HS with the GLF23 model show that the observed core confinement improvement can be partly explained by the beneficial s/q effect on the ITG driven transport while the effect of the ExB shear stabilisation is weaker than in H-mode plasmas. Strong stabilising effect of βe on the ITG turbulence has been found, but the transport reduction due to this effect can be limited by the onset of the KBM mode at high βe. The simulations of toroidal rotation in HS with the GLF23 model give an indication of the toroidal momentum pinch (Pr
  •  
6.
  • Moradi, Sara, 1981, et al. (author)
  • Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall
  • 2014
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 54:12, s. 123016-
  • Journal article (peer-reviewed)abstract
    • The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code (Candy and Belli 2011 General Atomics Report GA-A26818). In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by E×B rotation shear.
  •  
7.
  • Knight, P.J., et al. (author)
  • CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code
  • 2012
  • In: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 183:11, s. 2346-2363
  • Journal article (peer-reviewed)abstract
    • A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas on energy confinement timescales. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in toroidal configurations with axisymmetric equilibria. Uniquely, the equilibrium is co-evolved with the turbulence, and is thus modified by it. CENTORI is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor–corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelised using Message Passing Interface (MPI). Illustrative examples of output from simulations of a tearing mode in a large aspect ratio tokamak plasma and of turbulence in an elongated conventional aspect ratio tokamak plasma are provided.
  •  
8.
  • Romanelli, N., et al. (author)
  • Outflow and plasma acceleration in Titan's induced magnetotail : Evidence of magnetic tension forces
  • 2014
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:12
  • Journal article (peer-reviewed)abstract
    • Cassini plasma wave and particle observations are combined with magnetometer measurements to study Titan's induced magnetic tail. In this study, we report and analyze the plasma acceleration in Titan's induced magnetotail observed in flybys T17, T19, and T40. Radio and Plasma Wave Science observations show regions of cold plasma with electron densities between 0.1 and a few tens of electrons per cubic centimeter. The Cassini Plasma Spectrometer (CAPS)-ion mass spectrometer (IMS) measurements suggest that ionospheric plasma in this region is composed of ions with masses ranging from 15 to 17 amu and from 28 to 31 amu. From these measurements, we determine the bulk velocity of the plasma and the Alfven velocity in Titan's tail region. Finally, a Walen test of such measurements suggest that the progressive acceleration of the ionospheric plasma shown by CAPS can be interpreted in terms of magnetic tension forces.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view