SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ross O A) ;srt2:(2020-2022)"

Sökning: WFRF:(Ross O A) > (2020-2022)

  • Resultat 41-47 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Oldenburg, Joppe, et al. (författare)
  • Propranolol Reduces the Development of Lesions and Rescues Barrier Function in Cerebral Cavernous Malformations : A Preclinical Study
  • 2021
  • Ingår i: Stroke. - : Lippincott Williams & Wilkins. - 0039-2499 .- 1524-4628. ; 52:4, s. 1418-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Cerebral cavernous malformations (CCM) present as mulberry-like malformations of the microvasculature of the central nervous system. Current medical treatment of CCM lesions is limited to surgical removal of the vascular malformations. It is, therefore, important to identify therapeutic drug treatments for patients with CCM. Propranolol has shown great benefit in the treatment of infantile hemangioma. In addition, patients with CCM who receive propranolol have demonstrated a reduction of their lesions. Our investigation set out to provide preclinical data to support propranolol as a therapeutic treatment.Methods: An inducible endothelial-specific Ccm3 knockout murine model (CCM3(iECKO)) was used, with assessment of lesion quantity and size following oral treatment with propranolol. Scanning and transmission electron microscopy were used to characterize the CCM3(iECKO) lesions and the effects of propranolol on the disease. Immunofluorescent imaging was used to investigate pericyte coverage in the propranolol-treated CCM3(iECKO) mice.Results: With propranolol treatment, the lesion quantity, size, and volume decreased in both the brain and retina in the CCM3(iECKO) model. Novel characteristics of the CCM3(iECKO) lesions were discovered using electron microscopy, including plasmalemmal pits and thickening of the endothelial-pericyte basal membrane. These characteristics were absent with propranolol treatment. Pericyte coverage of the CCM3(iECKO) lesions increased after propranolol treatment, and vascular leakage was reduced.Conclusions: This study supports the concept that propranolol can be used to reduce and stabilize vascular lesions and can, therefore, be suggested as a pharmaceutical treatment for CCM.
  •  
42.
  • Globisch, Maria A., et al. (författare)
  • Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2154-2169
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
  •  
43.
  •  
44.
  •  
45.
  • Ursby, Thomas, et al. (författare)
  • BioMAX the first macromolecular crystallography beamline at MAX IV Laboratory
  • 2020
  • Ingår i: Journal of Synchrotron Radiation. - Chichester : Wiley-Blackwell. - 0909-0495 .- 1600-5775. ; 27, s. 1415-1429
  • Tidskriftsartikel (refereegranskat)abstract
    • BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 μm × 5 μm using the bendable focusing mirrors. The beam is tunable in the energy range 5-25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 μm × 1 μm beam focus and a flux up to 1015 photons s with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.
  •  
46.
  • Yau, Anthony C. Y., et al. (författare)
  • Inflammation and neutrophil extracellular traps in cerebral cavernous malformation
  • 2022
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer Nature. - 1420-682X .- 1420-9071. ; 79:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3(iECKO)), we show that endothelial cells from Ccm3(iECKO) mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3(iECKO) mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3(iECKO) mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas of patients with CCM confirms the clinical relevance of NETs in CCM.
  •  
47.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-47 av 47

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy