SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rubel Marek) srt2:(2010-2014)"

Search: WFRF:(Rubel Marek) > (2010-2014)

  • Result 1-10 of 59
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  •  
3.
  • Batistoni, P., et al. (author)
  • The JET technology program in support of ITER
  • 2014
  • In: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 89:7-8, s. 896-900
  • Journal article (peer-reviewed)abstract
    • This paper presents an overview of the current and planned technological activities at JET in support of ITER operation and safety. The scope is very broad and it ranges from analysis of components from the ITER-like Wall (ILW) to determine material erosion and deposition, dust generation and fuel retention to neutronics measurements and analyses. Preliminary results are given of the post-mortem analyses of samples exposed to JET plasmas during the first JET-ILW operation in 2011-2012, and retrieved during the following in-vessel intervention. JET is the only fusion machine capable of producing significant neutron yields, up to nearly 10(19) n/s (14.1 MeV) in DT operations. Recently, the technological potential of a new DT campaign at JET in support of ITER has been explored and the outcome of this assessment is presented. The expected 14 MeV neutron yield, the use of tritium, the preparation and implementation of safety measures will provide a unique occasion to gain experience in several ITER relevant technological areas. A number of projects and experiments to be conducted in conjunction with the DT operation have been identified and they are described in this paper.
  •  
4.
  • Brezinsek, S., et al. (author)
  • Overview of experimental preparation for the ITER-Like Wall at JET
  • 2011
  • In: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 415:1, s. S936-S942
  • Journal article (peer-reviewed)abstract
    • Experiments in JET with carbon-based plasma-facing components have been carried out in preparation of the ITER-Like Wall with beryllium main chamber and full tungsten divertor. The preparatory work was twofold: (i) development of techniques, which ensure safe operation with the new wall and (ii) provision of reference plasmas, which allow a comparison of operation with carbon and metallic wall. (i) Compatibility with the W divertor with respect to energy loads could be achieved in N-2 seeded plasmas at high densities and low temperatures, finally approaching partial detachment, with only moderate confinement reduction of 10%. Strike-point sweeping increases the operational space further by re-distributing the load over several components. (ii) Be and C migration to the divertor has been documented with spectroscopy and QMBs under different plasma conditions providing a database which will allow a comparison of the material transport to remote areas with metallic walls. Fuel retention rates of 1.0-2.0 x 10(21) D s(-1) were obtained as references in accompanied gas balance studies.
  •  
5.
  • Coad, J. P., et al. (author)
  • Overview of JET post-mortem results following the 2007-9 operational period, and comparisons with previous campaigns
  • 2011
  • In: Physica Scripta. - : Institute of Physics Publishing (IOPP). - 0031-8949 .- 1402-4896. ; T145, s. 014003-
  • Journal article (peer-reviewed)abstract
    • In 2010, all the plasma-facing components were removed from JET so that the carbon-based surfaces could be replaced with beryllium (Be) or tungsten as part of the ITER-like wall (ILW) project. This gives unprecedented opportunities for post-mortem analyses of these plasma-facing surfaces; this paper reviews the data obtained so far and relates the information to studies of tiles removed during previous JET shutdowns. The general pattern of erosion/deposition at the JET divertor has been maintained, with deposition of impurities in the scrape-off layer (SOL) at the inner divertor and preferential removal of carbon and transport into the corner. However, the remaining films in the SOL contain very high Be/C ratios at the surface. The first measurements of erosion using a tile profiler have been completed, with up to 200 microns erosion being recorded at points on the inner wall guard limiters.
  •  
6.
  • Garcia Carrasco, Alvaro, et al. (author)
  • Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR
  • 2014
  • In: Physica Scripta. - 0031-8949 .- 1402-4896. ; T159, s. 014017-
  • Journal article (peer-reviewed)abstract
    • Ion cyclotron wall conditioning (ICWC) is based on low temperature and low density plasmas produced and sustained by ion cyclotron resonance (ICR) pulses in reactive or noble gases. The technique is being developed for ITER. It is tested in tokamaks in the presence of toroidal magnetic field (0.2-3.8 T) and heating power of the order of 10(5) W. ICWC with hydrogen, deuterium and oxygen-helium mixture was studied in the TEXTOR tokamak. The exposed samples were pre-characterized limiter tiles mounted on specially designed probes. The objectives were to assess the reduction of deuterium content, the uniformity of the reduction and the retention of seeded oxygen. For the last objective oxygen-18 was used as a marker. ICWC in hydrogen caused a drop of deuterium content in the tile by a factor of more than 2: from 4.5x10(18) to 1.9x10(18) D cm(-2). A decrease of the fuel content by approximately 25% was achieved by the ICWC in oxygen, while no reduction of the fuel content was measured after exposure to discharges in deuterium. These are the first data ever obtained showing quantitatively the local decrease of deuterium in wall components treated by ICWC in a tokamak. The oxygen retention in the tiles exposed to ICWC with oxygen-helium was analyzed for different orientations and radial positions with respect to plasma. An average retention of 1.38x10(16) O-18 cm(-2) was measured. A maximum of the retention, 4.4x10(16) O-18 cm(-2), was identified on a sample surface near the plasma edge. The correlation with the gas inlet and antennae location has been studied.
  •  
7.
  • García Carrasco, Álvaro, 1989- (author)
  • Plasma-Facing Components in Tokamaks : Studies of Wall Conditioning Processes and Plasma Impact on Diagnostic Mirrors
  • 2014
  • Licentiate thesis (other academic/artistic)abstract
    • Understanding of material migration and its impact on the formation of co-deposited mixed material layers on plasma-facing components is essential for the development of fusion reactors. This thesis focuses on this topic. It is based on experiments performed at JET and TEXTOR tokamaks. The major objectives were to determine: (i) fuel and impurity removal from plasma-facing components by ICWC in different gas mixtures, (ii) fuel and impurity transport connected to ICWC operation, (iii) plasma impact on diagnostic mirrors. All these issues are in line with the ITER needs: mitigation of co-deposition and fuel inventory, and the performance of first mirrors in long-term operation. The novelty in research is demonstrated by several elements. In wall conditioning studies, tracer techniques based on injection of rare isotopes (N-15, O-18) were used to determine conclusively the impact of respective gases. Also, a new approach to ICWC was developed by combining global gas balance studies based on mass spectrometry and the use of multiple surface probes exposed to discharges and then studied ex-situ with accelerator-based techniques. Impact of plasma on diagnostic mirrors was determined after exposure to the entire first experimental campaign in JET-ILW.
  •  
8.
  • Hakola, A., et al. (author)
  • Global migration of impurities in tokamaks
  • 2013
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 55:12
  • Journal article (peer-reviewed)abstract
    • The migration of impurities in tokamaks has been studied with the help of tracer-injection (C-13 and N-15) experiments in JET and ASDEX Upgrade since 2001. We have identified a common pattern for the migrating particles: scrape-off layer flows drive impurities from the low-field side towards the high-field side of the vessel. Migration is also sensitive to the density and magnetic configuration of the plasma, and strong local variations in the resulting deposition patterns require 3D treatment of the migration process. Moreover, re-erosion of the deposited particles has to be taken into account to properly describe the migration process during steady-state operation of the tokamak.
  •  
9.
  • Ivanova, Darya, et al. (author)
  • An overview of the comprehensive First Mirror Test in JET with ITER-like wall
  • 2014
  • In: Physica Scripta. - 0031-8949 .- 1402-4896. ; T159, s. 014011-
  • Journal article (peer-reviewed)abstract
    • The First Mirror Test in Joint European Torus (JET) with the International Thermonuclear Experimental Reactor-like wall was performed with polycrystalline molybdenum mirrors. Two major types of experiments were done. Using a reciprocating probe system in the main chamber, a short-term exposure was made during a 0.3 h plasma operation in 71 discharges. The impact on reflectivity was negligible. In a long-term experiment lasting 19 h with 13 h of X-point plasma, 20 Mo mirrors were exposed, including four coated with a 1 mu m-thick Rh layer. Optical performance of all mirrors exposed in the divertor was degraded by up to 80% because of beryllium, carbon and tungsten co-deposits on surfaces. Total reflectivity of most Mo mirrors facing plasma in the main chamber was only slightly affected in the spectral range 400-1600 nm, while the Rh-coated mirror lost its high original reflectivity by 30%, thus decreasing to the level typical of molybdenum surfaces. Specular reflectivity was decreased most strongly in the 250-400 nm UV range. Surface measurements with x-ray photoelectron spectroscopy and depth profiling with secondary ion mass spectrometry and heavy-ion elastic recoil detection analysis (ERDA) revealed that the very surface region on both types of mirrors had been modified by neutrals, resulting eventually in the composition change: Be, C, D at the level below 1x10(16) cm(-2) mixed with traces of Ni, Fe in the layer 10-30 nm thick. On several exposed mirrors, the original matrix material (Mo) remained as the major constituent of the modified layer. The data obtained in two major phases of the JET operation with carbon and full metal walls are compared. The implications of these results for first mirrors and their maintenance in a reactor-class device are discussed.
  •  
10.
  • Ivanova, Darya, et al. (author)
  • Assessment of Cleaning Methods for First Mirrors Tested in JET for ITER
  • 2013
  • In: Journal of Nuclear Materials. - : Elsevier. - 0022-3115 .- 1873-4820. ; 438:Suppl., s. S1241-S1244
  • Journal article (peer-reviewed)abstract
    • Two cleaning techniques were used for removal of co-deposits from the tested first mirrors exposed in JET: (a) ultrasonic bath; (b) a broad range of polishing conditions from manual buffing to machine polishing with the diamond grain size of up to 3 lm. Reflectivity measurements were performed after each step in the cleaning procedure. Surfaces were also examined with electron microscopy and ion beam analysis methods. Ultrasonic cleaning leads to partial recovery of reflectivity due to enhanced detachment of deposits. Typically 30-50% of the original reflectivity was recovered in the visible light and 50-90% in the infrared region. One mirror was cleaned completely. Polishing with diamond paste may lead to successful removal of deposits but the damage to the surface in case of the large diamond grains was observed. Recovery of up to 100% of the initial reflectivity was achieved for some mirrors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 59

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view