SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruediger Thomas) srt2:(2015-2019)"

Sökning: WFRF:(Ruediger Thomas) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
4.
  • Scheer, Monika, et al. (författare)
  • Desmoplastic small round cell tumors : Multimodality treatment and new risk factors
  • 2019
  • Ingår i: Cancer Medicine. - : WILEY. - 2045-7634. ; 8:2, s. 527-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: To evaluate optimal therapy and potential risk factors.Methods: Data of DSRCT patients <40 years treated in prospective CWS trials 1997‐2015 were analyzed.Results: Median age of 60 patients was 14.5 years. Male:female ratio was 4:1. Tumors were abdominal/retroperitoneal in 56/60 (93%). 6/60 (10%) presented with a localized mass, 16/60 (27%) regionally disseminated nodes, and 38/60 (63%) with extraperitoneal metastases. At diagnosis, 23/60 (38%) patients had effusions, 4/60 (7%) a thrombosis, and 37/54 (69%) elevated CRP. 40/60 (67%) patients underwent tumor resection, 21/60 (35%) macroscopically complete. 37/60 (62%) received chemotherapy according to CEVAIE (ifosfamide, vincristine, actinomycin D, carboplatin, epirubicin, etoposide), 15/60 (25%) VAIA (ifosfamide, vincristine, adriamycin, actinomycin D) and, 5/60 (8%) P6 (cyclophosphamide, doxorubicin, vincristine, ifosfamide, etoposide). Nine received high‐dose chemotherapy, 6 received regional hyperthermia, and 20 received radiotherapy. Among 25 patients achieving complete remission, 18 (72%) received metronomic therapies. Three‐year event‐free (EFS) and overall survival (OS) were 11% (±8 confidence interval [CI] 95%) and 30% (±12 CI 95%), respectively, for all patients and 26.7% (±18.0 CI 95%) and 56.9% (±20.4 CI 95%) for 25 patients achieving remission. Extra‐abdominal site, localized disease, no effusion or ascites only, absence of thrombosis, normal CRP, complete tumor resection, and chemotherapy with VAIA correlated with EFS in univariate analysis. In multivariate analysis, significant factors were no thrombosis and chemotherapy with VAIA. In patients achieving complete remission, metronomic therapy with cyclophosphamide/vinblastine correlated with prolonged time to relapse.Conclusion: Pleural effusions, venous thrombosis, and CRP elevation were identified as potential risk factors. The VAIA scheme showed best outcome. Maintenance therapy should be investigated further.
  •  
5.
  •  
6.
  • Hunkeler, Priska A., et al. (författare)
  • A glimpse beneath Antarctic sea ice : Platelet layer volume from multifrequency electromagnetic induction sounding
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:1, s. 222-231
  • Tidskriftsartikel (refereegranskat)abstract
    • In Antarctica, ice crystals emerge from ice-shelf cavities and accumulate in unconsolidated layers beneath nearby sea ice. Such sub-ice platelet layers form a unique habitat, and serve as an indicator for the state of an ice shelf. However, the lack of a suitable methodology impedes an efficient quantification of this phenomenon on scales beyond point measurements. In this study, we inverted multi-frequency electromagnetic (EM) induction soundings of > 100 km length, obtained on fast ice with an underlying platelet layer in the eastern Weddell Sea. EM-derived platelet-layer thickness and conductivity are consistent with other field observations. Our results further suggest that platelet-layer volume is higher than previously thought in this region, and that platelet-layer ice-volume fraction is proportional to its thickness. We conclude that multi-frequency EM is a suitable tool to determine platelet-layer volume, with the potential to obtain crucial knowledge of associated processes in otherwise inaccessible ice-shelf cavities.
  •  
7.
  • Tobisch, Alexandra, et al. (författare)
  • Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging
  • 2019
  • Ingår i: NMR in Biomedicine. - : WILEY. - 0952-3480 .- 1099-1492. ; 32:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Time constraints placed on magnetic resonance imaging often restrict the application of advanced diffusion MRI (dMRI) protocols in clinical practice and in high throughput research studies. Therefore, acquisition strategies for accelerated dMRI have been investigated to allow for the collection of versatile and high quality imaging data, even if stringent scan time limits are imposed. Diffusion spectrum imaging (DSI), an advanced acquisition strategy that allows for a high resolution of intra-voxel microstructure, can be sufficiently accelerated by means of compressed sensing (CS) theory. CS theory describes a framework for the efficient collection of fewer samples of a data set than conventionally required followed by robust reconstruction to recover the full data set from sparse measurements. For an accurate recovery of DSI data, a suitable acquisition scheme for sparse q-space sampling and the sensing and sparsifying bases for CS reconstruction need to be selected. In this work we explore three different types of q-space undersampling schemes and two frameworks for CS reconstruction based on either Fourier or SHORE basis functions. After CS recovery, diffusion and microstructural parameters and orientational information are estimated from the reconstructed data by means of state-of-the-art processing techniques for dMRI analysis. By means of simulation, diffusion phantom and in vivo DSI data, an isotropic distribution of q-space samples was found to be optimal for sparse DSI. The CS reconstruction results indicate superior performance of Fourier-based CS-DSI compared to the SHORE-based approach. Based on these findings we outline an experimental design for accelerated DSI and robust CS reconstruction of the sparse measurements that is suitable for the application within time-limited studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy